US6731120B2 - Capacitive distance sensor - Google Patents

Capacitive distance sensor Download PDF

Info

Publication number
US6731120B2
US6731120B2 US09/999,065 US99906501A US6731120B2 US 6731120 B2 US6731120 B2 US 6731120B2 US 99906501 A US99906501 A US 99906501A US 6731120 B2 US6731120 B2 US 6731120B2
Authority
US
United States
Prior art keywords
cells
cell
distance
output
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/999,065
Other versions
US20020180464A1 (en
Inventor
Marco Tartagni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SRL
Apple Inc
Original Assignee
STMicroelectronics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP96830068A external-priority patent/EP0790479B1/en
Priority to US09/999,065 priority Critical patent/US6731120B2/en
Application filed by STMicroelectronics SRL filed Critical STMicroelectronics SRL
Publication of US20020180464A1 publication Critical patent/US20020180464A1/en
Priority to US10/829,403 priority patent/US6998855B2/en
Publication of US6731120B2 publication Critical patent/US6731120B2/en
Application granted granted Critical
Assigned to UPEK, INC. reassignment UPEK, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ST MICROELECTRONICS, S.R.L.
Assigned to AUTHENTEC, INC. reassignment AUTHENTEC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UPEK, INC.
Assigned to SGS-THOMSON MICROELECTRONICS S.R.L. reassignment SGS-THOMSON MICROELECTRONICS S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TARTAGNI, MARCO
Assigned to AUTHENTEC, INC. reassignment AUTHENTEC, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT DOCUMENT TO IDENTIFY UPEK, INC. AS A DELAWARE CORPORATION PREVIOUSLY RECORDED ON REEL 026944 FRAME 0942. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNOR'S INTEREST. Assignors: UPEK, INC.
Assigned to APPLE INC. reassignment APPLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AUTHENTEC, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing

Definitions

  • the present invention relates to a capacitive distance sensor, in particular, a small-distance (micrometric to millimetric) sensor.
  • Small-distance sensors are used, among other things, as pressure, proximity, roughness, mechanical stress and acceleration sensors, for example, in integrated microphony and for acquiring fingerprints.
  • known sensors include various types, such as optical, piezoelectric, variable-conductance, thermal, ultrasonic and capacitive, the most promising of which in terms of precision, size, production and cost are capacitive sensors.
  • Capacitive sensors are based on the principle that the capacitance between two plates is inversely proportional to the distance between them, so that, using the contacting dermal tissue itself as the second plate of the sensor capacitor, and by determining the capacitance, it is possible to locate the ridges and grooves of the fingerprint.
  • This is the principle used in U.S. Pat. No. 5,325,442 to Knapp, which relates to a sensor comprising an array of elementary cells, each comprising a sensitive electrode and an electronic switching device.
  • the electrode is coated with dielectric material, such as passivation oxide or a polymer compound, onto which the epidermis is placed.
  • dielectric material such as passivation oxide or a polymer compound
  • the capacitance between the plates of a capacitor varies in inverse proportion to the distance between the plates, which therefore poses the problem of normalizing the resulting data.
  • the capacitance being measured is very small, as in the application in question, serious difficulty is encountered in detecting the charge and discriminating between the various intermediate charge levels corresponding to different gray levels of the image to be generated in the presence of a low signal/noise ratio.
  • a preferred embodiment of the present invention is directed to a capacitive distance sensor for measuring small distances.
  • the distance sensor includes a first plate positioned facing a second plate such that the first and second plates define a distance to be measured therebetween and form a capacitive element therebetween.
  • the distance sensor also includes an amplifier having an input and an output. The capacitive element is connected between the input and the output to form a negative feedback branch.
  • the detecting capacitor the distance between the plates of which is to be determined, is placed in a negative feedback loop, thus inverting between the denominator and the numerator the dependence of the output voltage on the distance between the plates.
  • a preferred embodiment of the present invention is directed to a sensor device, integrated on a single semiconductor chip, that senses a distance between the sensor device and an object such as a human finger.
  • the sensor device includes first and second coplanar plates positioned adjacent to the object to form first and second capacitances between the object and the first and second plates, respectively.
  • the sensor device includes an amplifier having an input connected to the first plate and an output connected to the second plate to form a negative feedback branch that includes the first and second capacitances.
  • Fingerprint and other biometric sensors formed in accordance with the present invention will have application in preventing the unauthorized use of cellular phones, laptop computers, automobiles, automated teller machines, credit/debit card readers, POS terminals, and smart cards. They are also useful in authenticating electronic financial transactions, personal e-mail, providing access to buildings, etc.
  • Biometric identification such as personal identification and authentication alternatives which could be accomplished by mounting a sensor as taught by the present invention include hand or finger shape, facial shape, and facial features.
  • the sensor device of the present invention could be used for non-biometric sensing, such as handwriting detection, switch actuation, and any other device requiring sensitivity to object proximity.
  • FIG. 1 shows a sensor device for acquiring personal feature scans, such as fingerprints.
  • FIG. 2 shows a detail of a cell of the sensor device shown in FIG. 1 .
  • FIG. 3 shows an electric equivalent of the cell shown in FIG. 2 .
  • FIG. 4 is an illustration showing a finger positioned on two adjacent cells of the sensor device shown in FIG. 1 .
  • FIG. 5 is a block diagram of the sensor device shown in FIG. 1 .
  • FIG. 6 is a circuit diagram of one embodiment of the cell shown in FIG. 2 .
  • FIG. 7 is an image of a fingerprint obtained from the sensor device shown in FIG. 1 .
  • FIG. 1 shows a sensor device 1 , preferably embodied in an integrated chip, comprising a number of cells 2 arranged to form an array 3 and each constituting an elementary sensor.
  • the simplicity of the individual cells 2 enables the sensor device 1 to be implemented in integrated from on a single semiconductor chip.
  • the sensor device 1 also comprises a horizontal scanning stage 5 and a vertical scanning stage 6 for enabling one of the cells 2 at a time according to a predetermined scanning pattern.
  • stages 5 , 6 enable the outputs of the cells 2 sequentially, and comprise shift registers.
  • other cell reading devices could be employed, such as a random access decoder that reads addressed cells rather than sequentially scanning the cells 2 .
  • the sensor device 1 also comprises a supply and logic stage 7 , which supplies the components of the device with power (including the cells 2 ), feeds the necessary reference voltages, and controls the sequence of steps provided for (as explained in detail below).
  • the supply and logic stage 7 includes a voltage source 12 for generating a reference voltage variation ⁇ V R .
  • a buffer 8 is connected to the outputs of all the cells 2 , and supplies sequentially, at output 10 of the sensor array 3 , the signals present at the outputs of the cells 2 enabled by scanning stages 5 , 6 .
  • each cell 2 comprises a low-power inverting amplifier 13 of gain A, in turn presenting an input 16 at input voltage V i , and an output 17 , at output voltage V o , which also defines the output of cell 2 .
  • Each cell 2 also includes first and second plates 23 , 24 of equal area positioned facing the skin surface 18 of the finger being printed. Preferably, the first and second plates 23 , 24 are coplanar with respect to each other.
  • a reset switch 19 is connected between the input 16 and output 17 of the inverting amplifier 13 .
  • An input capacitor 20 is connected between an input 21 of the cell 2 and the input 16 of the inverting amplifier 13 .
  • first and second plates 23 and 24 are respectively connected to the output 17 and the input 16 of the inverting amplifier 13 , thus realizing a charge integrator.
  • the first and second plates 23 and 24 are covered with a dielectric insulating layer 25 that covers the face of integrated sensor device 1 , including the entire array 3 of cells 2 .
  • skin surface 18 forms a third plate facing the first and second plates 23 , 24 , and defining with them a pair of series capacitors feedback connected between input 16 and output 17 of inverting amplifier 13 . Accordingly, a contact grid is not required to bias the skin surface at constant voltage.
  • the switch 19 is a controlled switch formed using any known technology (e.g., a MOS switch) and receives a control signal R from the supply and logic stage 7 .
  • the input 21 of the cell 2 is also connected to the supply and logic stage 7 to receive a voltage signal ⁇ V R as explained below.
  • the skin surface 18 is placed on the surface of integrated sensor device 1 , at array 3 , to complete the pairs of capacitors forming the feedback loops of amplifiers 13 of all the cells 2 .
  • the switches 19 of all the cells are closed, and the voltage level at each of inputs 21 is constant, so that the input voltage V i of all the cells 2 is brought to the same potential as the output voltage V o , between the supply and ground at a high-gain point or logical threshold Vt of inverting amplifier 13 .
  • the local distance “ d ” varies according to whether the point being measured corresponds to a groove, a ridge or a point between the two.
  • Scanning stages 5 , 6 then sequentially enable the reading of cells 2 , so that the voltage signal at the output 10 of the buffer 8 is supplied to a system for representing the distance, in known manner, by means of gray levels, and so providing a three-dimensional display of the skin surface.
  • FIG. 3 shows an equivalent input capacitance 30 and an equivalent output capacitance 31 of the inverting amplifier 13 and the charge flow direction (indicated by the arrows) corresponding to the voltage variations at the plates.
  • FIG. 3 also shows a first feedback capacitor 33 formed by the first plate 23 and the skin surface 18 and a second feedback capacitor 34 formed by the second plate 24 and the skin surface 18 .
  • the variation in output voltage as a result of the charge step is directly proportional to the distance between the plates 23 , 24 and the skin surface 18 , in turn dependent on the three-dimensional structure of the skin.
  • the output voltage of the inverter 30 will range between two extremes, depending on feedback capacitance value: (i) the upper saturation level if no feedback capacitance is present; (ii) a value close to the logical threshold when the feedback capacitance is large.
  • the output signals of the device according to the invention are therefore such, when converted into gray levels, as to provide a highly reliable representation of the three-dimensional structure of the skin surface.
  • FIG. 4 is an illustration of the skin surface 18 positioned on first and second adjacent cells 2 A, 2 B of the sensor device 1 . It is to be understood that the present invention will have application to thumbs, palms, and any contact surface where an image is desired.
  • Each of the adjacent cells 2 A, 2 B is substantially identical to the cell 2 shown in FIGS. 2-3, and thus, additional detailed discussions of the elements of cells 2 A, 2 B are being omitted for simplicity.
  • the elements of the adjacent cells 2 A, 2 B are marked with labels corresponding to the labels of FIGS. 2 and 3 with an “A” and a “B” added to the cells 2 A and 2 B, respectively.
  • the skin surface 18 shown in FIG. 4 includes a ridge 36 adjacent to the first cell 2 A and a valley 38 adjacent to the second cell 2 B.
  • the first and second cells 2 A, 2 B will each produce different capacitive coupling responses in the sensor device 1 . Accordingly, the first cell 2 A will sense a smaller distance d 1 , signifying the ridge 36 , than the second cell 2 B, which senses a larger distance d 2 , signifying the valley 38 .
  • the distance d 2 sensed by the second cell 2 B will be the average of a distance d 2 a between the first plate 23 B and the portion of the skin surface 18 directly above the first plate 23 B and a distance d 2 b between the second plate 24 B and the portion of the skin surface 18 directly above the second plate 24 B. From a lumped-model point of view, this structure realizes a two series-connected capacitors scheme that can sense the difference between a contacting member, a ridge, and a non-contacting member, a valley.
  • FIG. 5 A block diagram of the sensor device 1 according to one embodiment of the invention is shown in FIG. 5 .
  • the sensor device 1 includes the sensor array 3 which is coupled by a digital to analog (D/A) converter 40 to an I 2 C interface and control device 42 and a bias generator 44 .
  • D/A digital to analog
  • the sensor device 1 also includes an oscillator 46 and timing generator 48 coupled to the sensor array 3 .
  • the D/A converter 40 , I 2 C interface and control device 42 , bias generator 44 , oscillator 46 , and timing generator 48 together implement the functionality of the supply and logic unit 7 discussed above.
  • the I 2 C interface and control device 42 provides a bidirectional communication protocol that enables the sensor device 1 to communicate with a controller, such as a standard computer.
  • the D/A converter 40 converts digital control signals from the I 2 C interface and control device 42 into analog signals that are transmitted to the sensor array 3 to control the scanning of the cells 2 by the horizontal and vertical scanners 5 , 6 .
  • the D/A converter 42 also provides analog biases, such as the voltage step V r .
  • the timing generator 48 takes a single clock signal from the oscillator 46 and generates timing signals that are provided to the sensor array 3 under the control of the I 2 C interface and control device 42 .
  • the sensor device includes an analog to /digital (A/D) converter 50 coupled between the output 10 of the sensor array 3 and the computer.
  • the A/D converter 50 also is coupled to the bias generator 44 and timing generator 48 to enable the A/D converter 50 to convert the analog voltage measurements output by the sensor array 3 to digital signals that are recognized by the computer as distance measurements.
  • the sensor array 3 also is directly coupled to the computer by a synchronization line 52 that provides the computer with synchronization signals that help the computer properly interpret the digital distance measurements received from the A/D converter 50 .
  • the cell 2 includes first and second transistors M 1 , M 2 of the N-channel type and third and fourth transistors M 3 , M 4 of the P-channel type connected together in series to comprise a high gain cascode inverting amplifier 13 .
  • a first horizontal scan line (hor 1 ) and a first vertical scan line (vert 1 ) are coupled respectively from the horizontal and vertical scanners 5 , 6 to the second transistor M 2 and the third transistor M 3 to ensure that only one cell at a time is powered, thereby limiting power consumption of non-addressed cells.
  • a gate terminal of the first transistor M 1 is coupled by the input capacitor 20 of the cell 2 to the cell input 21 .
  • the gate of the fourth transistor M 4 is coupled to a fixed bias V p .
  • the output 17 of the inverting amplifier 13 is buffered by a source follower stage (fifth transistor M 5 ) into a vertical output line 54 by means of a sixth transistor M 6 .
  • a seventh transistor M 7 couples the vertical output line 54 to the output buffer 8 of the sensor device 1 .
  • the gate of the sixth transistor M 6 is coupled by a second horizontal scan line (hor 2 ) to the horizontal scanner 5 and the gate of the seventh transistor M 7 is coupled by a second vertical scan line (vert 2 ) to the vertical scanner 6 , which ensures that only one cell at a time is communicating with the output buffer 8 . This greatly reduces the output capacitance of the follower stage 46 since only one vertical output line at a time is connected to the output buffer 8 .
  • the reset switch 19 is connected between the input 16 and output 17 of the inverting amplifier 13 as discussed above.
  • the reset switch 19 is designed to prevent charge injection in the input 16 from saturating the inverting amplifier 13 . If the switch-off transient of the reset switch 19 is slow enough compared to the inverse of the gain bandwidth product of the inverting amplifier 13 , most of the channel charge of the reset switch is injected into the output node.
  • the reset switch 19 includes eighth and ninth transistors M 8 , M 9 with their drain terminals coupled together to the input 16 and their source terminals coupled together to the output 17 . The size of the eighth transistor M 8 is small in order to reduce the absolute amount of injected charge.
  • the ninth transistor M 9 is stronger than the eighth transistor M 8 and is activated at a different phase than the eighth transistor M 8 is introduced. During the reset phase, both transistors M 8 , M 9 are set, reducing resistance of the feedback loop so output ringing is contained. During charge integration, the ninth transistor M 9 is first opened so its channel charge is absorbed by the eighth transistor M 8 . Finally, the eighth transistor M 8 is opened by a slow gate transient to ensure low charge-injection on the input.
  • the chip is made using a 0.7 ⁇ m CMOS digital process.
  • the cell area is 65 ⁇ 65 ⁇ m 2 , giving a 390 dpi resolution.
  • a sample image 56 produced for a 200 ⁇ 200 window is shown in FIG. 7, which clearly shows gray levels. The image disappears as the finger is removed.
  • the power consumption measured at 3 ⁇ s of a period cycle is 250 ⁇ W for the digital circuitry and 300 ⁇ W for the cell array 34 and buffer.
  • the sensor cells 2 described above are preferably formed using conventional silicon integrated circuit methodology. More particularly, all of the elements of the sensor device 1 shown in FIGS. 1-6 can be integrated on a single chip. Alternatively, one or more of the elements, such as the oscillator 46 , can be made separately and coupled to the integrated elements of the sensor device 1 .
  • the sensor device shown in FIGS. 1-6 has at least the following advantages.
  • the sensor device provides for a high degree of precision with no need for complex processing of the output signal.
  • the sensor device may be produced easily and integrated using current microelectronic technology and is highly reliable, compact, and cheap to produce.
  • the sensor device according to the invention may also be used to advantage in other applications requiring precise detection of small distances.
  • each cell enables a large number of cells to be accommodated in array structures for detecting two-dimensional physical quantities.
  • inverting amplifier 13 may be connected directly to the input or output of inverting amplifier 13 to eliminate one of plates 23 , 24 .
  • inverting amplifier 13 may be implemented by any inverting or differential amplifier (e.g., an operational amplifier) in a charge amplifier configuration to increase the speed of the output signal.

Abstract

A distance sensor has a capacitive element in turn having a first plate which is positioned facing a second plate whose distance is to be measured. In the case of fingerprinting, the second plate is defined directly by the skin surface of the finger being printed. The sensor comprises an inverting amplifier, between the input and output of which the capacitive element is connected to form a negative feedback branch. By supplying an electric charge step to the input of the inverting amplifier, a voltage step directly proportional to the distance being measured is obtained at the output.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a division of U.S. patent application Ser. No. 09/019,496 filed Feb. 5, 1998, now U.S. Pat. No. 6,320,334, entitled “Capacitive Distance Sensor, which was a continuation-in-part of U.S. patent application Ser. No. 08/799,548, entitled “Capacitive Distance Sensor,” filed Feb. 13, 1997, now abandoned. Additionally, this application is related to U.S. patent application Ser. No. 09/179,923, filed Oct. 27, 1998, now U.S. Pat. No. 6,362,633.
TECHNICAL FIELD
The present invention relates to a capacitive distance sensor, in particular, a small-distance (micrometric to millimetric) sensor.
BACKGROUND OF THE INVENTION
Small-distance sensors are used, among other things, as pressure, proximity, roughness, mechanical stress and acceleration sensors, for example, in integrated microphony and for acquiring fingerprints.
For fingerprint acquisition in particular (to which reference is made herein purely by way of example of a preferred application of the present invention), known sensors include various types, such as optical, piezoelectric, variable-conductance, thermal, ultrasonic and capacitive, the most promising of which in terms of precision, size, production and cost are capacitive sensors.
Capacitive sensors are based on the principle that the capacitance between two plates is inversely proportional to the distance between them, so that, using the contacting dermal tissue itself as the second plate of the sensor capacitor, and by determining the capacitance, it is possible to locate the ridges and grooves of the fingerprint. This is the principle used in U.S. Pat. No. 5,325,442 to Knapp, which relates to a sensor comprising an array of elementary cells, each comprising a sensitive electrode and an electronic switching device. The electrode is coated with dielectric material, such as passivation oxide or a polymer compound, onto which the epidermis is placed. When a cell is selected, a predetermined variation in potential is applied to the electrode to induce at the terminals an appropriate variation in charge. The extent of variation in charge depends on the capacitance associated with the electrode and is read by amplifying elements connected to the output of the device. To improve efficiency, the above patent suggests a surface grid connected to a reference potential to appropriately bias the skin tissue.
In the above known capacitive sensor, the capacitance between the plates of a capacitor varies in inverse proportion to the distance between the plates, which therefore poses the problem of normalizing the resulting data. In particular, if the capacitance being measured is very small, as in the application in question, serious difficulty is encountered in detecting the charge and discriminating between the various intermediate charge levels corresponding to different gray levels of the image to be generated in the presence of a low signal/noise ratio.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a sensor designed to overcome the drawbacks typically associated with known technology.
A preferred embodiment of the present invention is directed to a capacitive distance sensor for measuring small distances. The distance sensor includes a first plate positioned facing a second plate such that the first and second plates define a distance to be measured therebetween and form a capacitive element therebetween. The distance sensor also includes an amplifier having an input and an output. The capacitive element is connected between the input and the output to form a negative feedback branch.
In practice, according to the present invention, the detecting capacitor, the distance between the plates of which is to be determined, is placed in a negative feedback loop, thus inverting between the denominator and the numerator the dependence of the output voltage on the distance between the plates.
A preferred embodiment of the present invention is directed to a sensor device, integrated on a single semiconductor chip, that senses a distance between the sensor device and an object such as a human finger. The sensor device includes first and second coplanar plates positioned adjacent to the object to form first and second capacitances between the object and the first and second plates, respectively. The sensor device includes an amplifier having an input connected to the first plate and an output connected to the second plate to form a negative feedback branch that includes the first and second capacitances.
Fingerprint and other biometric sensors formed in accordance with the present invention will have application in preventing the unauthorized use of cellular phones, laptop computers, automobiles, automated teller machines, credit/debit card readers, POS terminals, and smart cards. They are also useful in authenticating electronic financial transactions, personal e-mail, providing access to buildings, etc. Biometric identification, such as personal identification and authentication alternatives which could be accomplished by mounting a sensor as taught by the present invention include hand or finger shape, facial shape, and facial features. In addition, the sensor device of the present invention could be used for non-biometric sensing, such as handwriting detection, switch actuation, and any other device requiring sensitivity to object proximity.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a sensor device for acquiring personal feature scans, such as fingerprints.
FIG. 2 shows a detail of a cell of the sensor device shown in FIG. 1.
FIG. 3 shows an electric equivalent of the cell shown in FIG. 2.
FIG. 4 is an illustration showing a finger positioned on two adjacent cells of the sensor device shown in FIG. 1.
FIG. 5 is a block diagram of the sensor device shown in FIG. 1.
FIG. 6 is a circuit diagram of one embodiment of the cell shown in FIG. 2.
FIG. 7 is an image of a fingerprint obtained from the sensor device shown in FIG. 1.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a sensor device 1, preferably embodied in an integrated chip, comprising a number of cells 2 arranged to form an array 3 and each constituting an elementary sensor. The simplicity of the individual cells 2 enables the sensor device 1 to be implemented in integrated from on a single semiconductor chip.
The sensor device 1 also comprises a horizontal scanning stage 5 and a vertical scanning stage 6 for enabling one of the cells 2 at a time according to a predetermined scanning pattern. Preferably, to read the cells, stages 5, 6 enable the outputs of the cells 2 sequentially, and comprise shift registers. Alternatively, other cell reading devices could be employed, such as a random access decoder that reads addressed cells rather than sequentially scanning the cells 2.
The sensor device 1 also comprises a supply and logic stage 7, which supplies the components of the device with power (including the cells 2), feeds the necessary reference voltages, and controls the sequence of steps provided for (as explained in detail below). In particular, FIG. 1 shows that the supply and logic stage 7 includes a voltage source 12 for generating a reference voltage variation ΔVR. A buffer 8 is connected to the outputs of all the cells 2, and supplies sequentially, at output 10 of the sensor array 3, the signals present at the outputs of the cells 2 enabled by scanning stages 5, 6.
As shown in FIG. 2, each cell 2 comprises a low-power inverting amplifier 13 of gain A, in turn presenting an input 16 at input voltage Vi, and an output 17, at output voltage Vo, which also defines the output of cell 2. Each cell 2 also includes first and second plates 23, 24 of equal area positioned facing the skin surface 18 of the finger being printed. Preferably, the first and second plates 23, 24 are coplanar with respect to each other. A reset switch 19 is connected between the input 16 and output 17 of the inverting amplifier 13. An input capacitor 20 is connected between an input 21 of the cell 2 and the input 16 of the inverting amplifier 13.
More specifically, the first and second plates 23 and 24 are respectively connected to the output 17 and the input 16 of the inverting amplifier 13, thus realizing a charge integrator. The first and second plates 23 and 24 are covered with a dielectric insulating layer 25 that covers the face of integrated sensor device 1, including the entire array 3 of cells 2. In use, therefore, skin surface 18 forms a third plate facing the first and second plates 23, 24, and defining with them a pair of series capacitors feedback connected between input 16 and output 17 of inverting amplifier 13. Accordingly, a contact grid is not required to bias the skin surface at constant voltage.
The switch 19 is a controlled switch formed using any known technology (e.g., a MOS switch) and receives a control signal R from the supply and logic stage 7. The input 21 of the cell 2 is also connected to the supply and logic stage 7 to receive a voltage signal ΔVR as explained below.
To acquire fingerprints, the skin surface 18 is placed on the surface of integrated sensor device 1, at array 3, to complete the pairs of capacitors forming the feedback loops of amplifiers 13 of all the cells 2. At the start of the measurement, the switches 19 of all the cells are closed, and the voltage level at each of inputs 21 is constant, so that the input voltage Vi of all the cells 2 is brought to the same potential as the output voltage Vo, between the supply and ground at a high-gain point or logical threshold Vt of inverting amplifier 13.
Subsequently, the supply and logic stage 7 opens all the switches 19 in parallel, and supplies all the inputs 21 with a voltage step ΔVR, so that a charge variation ΔQ=Ci*ΔVR (where Ci is the capacitance of input capacitor 20) is induced at the terminals of each input capacitor 20 to permit a reading, as explained below, of the local distance “d” between the first and second plates 23, 24 and skin surface 18 facing them. Obviously, the local distance “d” varies according to whether the point being measured corresponds to a groove, a ridge or a point between the two.
Scanning stages 5, 6 then sequentially enable the reading of cells 2, so that the voltage signal at the output 10 of the buffer 8 is supplied to a system for representing the distance, in known manner, by means of gray levels, and so providing a three-dimensional display of the skin surface.
The way in which the local distance “d” between the first and second plates 23, 24 of each cell 2 and the third plate formed by the skin surface 18 is detected will now be described with reference to the equivalent electric diagram in FIG. 3.
FIG. 3 shows an equivalent input capacitance 30 and an equivalent output capacitance 31 of the inverting amplifier 13 and the charge flow direction (indicated by the arrows) corresponding to the voltage variations at the plates. FIG. 3 also shows a first feedback capacitor 33 formed by the first plate 23 and the skin surface 18 and a second feedback capacitor 34 formed by the second plate 24 and the skin surface 18.
Assuming Cl is the equivalent input capacitance 30 of inverting amplifier 13; Cr is the total capacitance of the series-connected feedback capacitors 33 and 34; A is the gain of the inverting amplifier 13; ΔQ is the charge variation induced in the equivalent input capacitance 30 by voltage step ΔVR; ΔQi is the charge variation stored in the equivalent input capacitance 30 as a result of step ΔVR; ΔQr is the charge variation in the feedback branch formed by the series connection of the feedback capacitors 33, 34; ΔVi is the voltage step at the input 16 of the inverting amplifier 13; ΔVo is the corresponding voltage variation at the output 17 (equal to −A ΔVi); S is the size of the top surface (surface facing the skin surface 18) of each plate 23, 24 of capacitors 33, 34; εo is the electric constant (seeing as, in the fingerprinting application, the average distance between the skin surface 18 and the insulating layer 25—typically 60 μm at the grooves—is greater than the thickness of layer 25—typically 2 μm); and “d” is the local distance between plates 23, 24 and skin surface 18 (approximately the same for both plates 23, 24, in view of the very small size of cells 2—typically about 45 μm); then total feedback capacitance Cr is given by the following equation: C r = S ɛ 0 2 d Moreover: Δ Q = Δ Q i + Δ Q r = C l Δ V i + C r ( Δ V i - Δ V o ) = - Δ V o A ( C 1 + C r ) - Δ V o C r so  that: ( 1 ) Δ V o = - Δ Q C 1 A + ( 1 + 1 A ) C r Substituting ( 1 ) in ( 2 ) gives : ( 2 ) Δ V o = Δ Q C 1 A + ( 1 + 1 A ) S ɛ o 2 d = - 2 Δ Qd 2 C 1 d A + ( 1 + 1 A ) S ɛ o Assuming A >> 1 , ( 3 ) becomes : ( 3 ) Δ V o = d 2 ΔQ S ɛ o ( 4 )
Figure US06731120-20040504-M00001
Consequently, by virtue of the negative feedback effected by capacitive coupling the output 17 and input 16 of the inverting amplifier 13 via the skin tissue, the variation in output voltage as a result of the charge step is directly proportional to the distance between the plates 23, 24 and the skin surface 18, in turn dependent on the three-dimensional structure of the skin. For a fixed amount of the input voltage step ΔVi, the output voltage of the inverter 30 will range between two extremes, depending on feedback capacitance value: (i) the upper saturation level if no feedback capacitance is present; (ii) a value close to the logical threshold when the feedback capacitance is large.
With appropriate amplification levels (e.g., 1000-2000), it is possible to detect differences in capacitance of about ten fF and hence micrometric distances. The output signals of the device according to the invention are therefore such, when converted into gray levels, as to provide a highly reliable representation of the three-dimensional structure of the skin surface.
The operation of the sensor device 1 can be further appreciated with regard to FIG. 4, which is an illustration of the skin surface 18 positioned on first and second adjacent cells 2A, 2B of the sensor device 1. It is to be understood that the present invention will have application to thumbs, palms, and any contact surface where an image is desired. Each of the adjacent cells 2A, 2B is substantially identical to the cell 2 shown in FIGS. 2-3, and thus, additional detailed discussions of the elements of cells 2A, 2B are being omitted for simplicity. The elements of the adjacent cells 2A, 2B are marked with labels corresponding to the labels of FIGS. 2 and 3 with an “A” and a “B” added to the cells 2A and 2B, respectively.
The skin surface 18 shown in FIG. 4 includes a ridge 36 adjacent to the first cell 2A and a valley 38 adjacent to the second cell 2B. As a result, the first and second cells 2A, 2B will each produce different capacitive coupling responses in the sensor device 1. Accordingly, the first cell 2A will sense a smaller distance d1, signifying the ridge 36, than the second cell 2B, which senses a larger distance d2, signifying the valley 38. The distance d2 sensed by the second cell 2B will be the average of a distance d2 a between the first plate 23B and the portion of the skin surface 18 directly above the first plate 23B and a distance d2 b between the second plate 24B and the portion of the skin surface 18 directly above the second plate 24B. From a lumped-model point of view, this structure realizes a two series-connected capacitors scheme that can sense the difference between a contacting member, a ridge, and a non-contacting member, a valley.
A block diagram of the sensor device 1 according to one embodiment of the invention is shown in FIG. 5. The sensor device 1 includes the sensor array 3 which is coupled by a digital to analog (D/A) converter 40 to an I2C interface and control device 42 and a bias generator 44. For simplicity, the horizontal and vertical scanners 5,6 and the output buffer 8 are not shown in FIG. 5, but are part of the sensor device 1 shown in FIG. 5. The sensor device 1 also includes an oscillator 46 and timing generator 48 coupled to the sensor array 3. The D/A converter 40, I2C interface and control device 42, bias generator 44, oscillator 46, and timing generator 48 together implement the functionality of the supply and logic unit 7 discussed above. The I2C interface and control device 42 provides a bidirectional communication protocol that enables the sensor device 1 to communicate with a controller, such as a standard computer. The D/A converter 40 converts digital control signals from the I2C interface and control device 42 into analog signals that are transmitted to the sensor array 3 to control the scanning of the cells 2 by the horizontal and vertical scanners 5,6. The D/A converter 42 also provides analog biases, such as the voltage step Vr. The timing generator 48 takes a single clock signal from the oscillator 46 and generates timing signals that are provided to the sensor array 3 under the control of the I2C interface and control device 42.
To enable the distance measurements (represented by voltages) to be output to the computer coupled to the sensor device 1, the sensor device includes an analog to /digital (A/D) converter 50 coupled between the output 10 of the sensor array 3 and the computer. The A/D converter 50 also is coupled to the bias generator 44 and timing generator 48 to enable the A/D converter 50 to convert the analog voltage measurements output by the sensor array 3 to digital signals that are recognized by the computer as distance measurements. The sensor array 3 also is directly coupled to the computer by a synchronization line 52 that provides the computer with synchronization signals that help the computer properly interpret the digital distance measurements received from the A/D converter 50.
A detailed schematic of the cell 2 of FIG. 2 is illustrated in FIG. 6. The cell 2 includes first and second transistors M1, M2 of the N-channel type and third and fourth transistors M3, M4 of the P-channel type connected together in series to comprise a high gain cascode inverting amplifier 13. A first horizontal scan line (hor1) and a first vertical scan line (vert1) are coupled respectively from the horizontal and vertical scanners 5, 6 to the second transistor M2 and the third transistor M3 to ensure that only one cell at a time is powered, thereby limiting power consumption of non-addressed cells. A gate terminal of the first transistor M1 is coupled by the input capacitor 20 of the cell 2 to the cell input 21. ΔVr, as discussed above. When the voltage step ΔVr is applied to the input node 21, a charge amount dQ=CiΔVr is sinked from the amplifier input 16 as previously explained. This mode of operation is useful since by changing the amount of ΔVr, the sensor can deal with different ranges of sensed capacitances. The gate of the fourth transistor M4 is coupled to a fixed bias Vp.
The output 17 of the inverting amplifier 13 is buffered by a source follower stage (fifth transistor M5) into a vertical output line 54 by means of a sixth transistor M6. A seventh transistor M7 couples the vertical output line 54 to the output buffer 8 of the sensor device 1. The gate of the sixth transistor M6 is coupled by a second horizontal scan line (hor2) to the horizontal scanner 5 and the gate of the seventh transistor M7 is coupled by a second vertical scan line (vert2) to the vertical scanner 6, which ensures that only one cell at a time is communicating with the output buffer 8. This greatly reduces the output capacitance of the follower stage 46 since only one vertical output line at a time is connected to the output buffer 8.
The reset switch 19 is connected between the input 16 and output 17 of the inverting amplifier 13 as discussed above. The reset switch 19 is designed to prevent charge injection in the input 16 from saturating the inverting amplifier 13. If the switch-off transient of the reset switch 19 is slow enough compared to the inverse of the gain bandwidth product of the inverting amplifier 13, most of the channel charge of the reset switch is injected into the output node. The reset switch 19 includes eighth and ninth transistors M8, M9 with their drain terminals coupled together to the input 16 and their source terminals coupled together to the output 17. The size of the eighth transistor M8 is small in order to reduce the absolute amount of injected charge. Reducing the dimension of the eighth transistor M8 degrades the stability of the inverting amplifier 13 since it reduces the loop gain-bandwidth. In this design, the ninth transistor M9 is stronger than the eighth transistor M8 and is activated at a different phase than the eighth transistor M8 is introduced. During the reset phase, both transistors M8, M9 are set, reducing resistance of the feedback loop so output ringing is contained. During charge integration, the ninth transistor M9 is first opened so its channel charge is absorbed by the eighth transistor M8. Finally, the eighth transistor M8 is opened by a slow gate transient to ensure low charge-injection on the input.
In a preferred embodiment, the chip is made using a 0.7 μm CMOS digital process. The cell area is 65×65 μm2, giving a 390 dpi resolution. A sample image 56 produced for a 200×200 window is shown in FIG. 7, which clearly shows gray levels. The image disappears as the finger is removed. The power consumption measured at 3 μs of a period cycle is 250 μW for the digital circuitry and 300 μW for the cell array 34 and buffer.
The sensor cells 2 described above are preferably formed using conventional silicon integrated circuit methodology. More particularly, all of the elements of the sensor device 1 shown in FIGS. 1-6 can be integrated on a single chip. Alternatively, one or more of the elements, such as the oscillator 46, can be made separately and coupled to the integrated elements of the sensor device 1.
The sensor device shown in FIGS. 1-6 has at least the following advantages. In particular, as stated, the sensor device provides for a high degree of precision with no need for complex processing of the output signal. Further, the sensor device may be produced easily and integrated using current microelectronic technology and is highly reliable, compact, and cheap to produce.
The sensor device according to the invention may also be used to advantage in other applications requiring precise detection of small distances.
Moreover, the simple design of each cell enables a large number of cells to be accommodated in array structures for detecting two-dimensional physical quantities.
Clearly, changes may be made to the device as described and illustrated herein without, however, departing from the scope of the present invention. In particular, if fabrication techniques enabling the formation of elastic structures (micromachining techniques) are available, the electrode whose distance is being measured may be connected directly to the input or output of inverting amplifier 13 to eliminate one of plates 23, 24. Moreover, all the components may be replaced by technical equivalents. For example, though an inverter such as inverting amplifier 13 is currently preferred for design and layout reasons, amplifier 13 may be implemented by any inverting or differential amplifier (e.g., an operational amplifier) in a charge amplifier configuration to increase the speed of the output signal.

Claims (5)

What is claimed is:
1. An integrated sensor device for measuring a distance between the sensor device and an object, the sensor device comprising:
an insulating layer;
a plurality of output lines; and
an array of distance detecting cells below the insulating layer and selectively connected to the output lines, each cell including an input terminal and an output terminal;
each cell further includes:
a first capacitor plate;
a second capacitor plate;
a horizontal scan line circuit coupled to each row of cells in the array for selectively enabling a row of cells; and
a vertical scan line circuit coupled to each column of cells in the array for selectively enabling a column of cells, the horizontal scan line and the vertical scan lines together providing for selection of individual cells.
2. The device of claim 1 further including:
a voltage supply circuit coupled to the input terminal of each cell of the array; and
a step voltage circuit means as part of the voltage supply circuit for selectively applying a step voltage to each cell of the array.
3. The distance sensor system of claim 1 further including:
an input capacitor coupled to the input terminal.
4. The distance sensor system of claim 1 wherein
the insulating layer has a first surface that is adjacent to the first and second plates of each cell and a second surface that is configured to receive an object to be placed adjacent to the second surface to form first and second capacitances between the first plate and the object and the second plate and the object, respectively.
5. The distance sensor system of claim 1 wherein the object is a finger.
US09/999,065 1996-02-14 2001-10-30 Capacitive distance sensor Expired - Lifetime US6731120B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/999,065 US6731120B2 (en) 1996-02-14 2001-10-30 Capacitive distance sensor
US10/829,403 US6998855B2 (en) 1996-02-14 2004-04-20 Capacitive distance sensor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP96830068 1996-02-14
EP96830068A EP0790479B1 (en) 1996-02-14 1996-02-14 Capacitive distance sensor, particularly for acquiring fingerprints
EP96830068.1 1996-02-14
US79954897A 1997-02-13 1997-02-13
US09/019,496 US6320394B1 (en) 1996-02-14 1998-02-05 Capacitive distance sensor
US09/999,065 US6731120B2 (en) 1996-02-14 2001-10-30 Capacitive distance sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/019,496 Division US6320394B1 (en) 1996-02-14 1998-02-05 Capacitive distance sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/829,403 Division US6998855B2 (en) 1996-02-14 2004-04-20 Capacitive distance sensor

Publications (2)

Publication Number Publication Date
US20020180464A1 US20020180464A1 (en) 2002-12-05
US6731120B2 true US6731120B2 (en) 2004-05-04

Family

ID=46255897

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/019,496 Expired - Lifetime US6320394B1 (en) 1996-02-14 1998-02-05 Capacitive distance sensor
US09/999,065 Expired - Lifetime US6731120B2 (en) 1996-02-14 2001-10-30 Capacitive distance sensor
US10/829,403 Expired - Fee Related US6998855B2 (en) 1996-02-14 2004-04-20 Capacitive distance sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/019,496 Expired - Lifetime US6320394B1 (en) 1996-02-14 1998-02-05 Capacitive distance sensor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/829,403 Expired - Fee Related US6998855B2 (en) 1996-02-14 2004-04-20 Capacitive distance sensor

Country Status (1)

Country Link
US (3) US6320394B1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062485A1 (en) * 2003-08-25 2005-03-24 Seiko Epson Corporation Capacitance detection apparatus, driving method for the same, fingerprint sensor, and biometric authentication apparatus
US20050088185A1 (en) * 2003-09-05 2005-04-28 Seiko Epson Corporation Electrostatic capacitance sensing device and method of driving the same
US20110234639A1 (en) * 2008-12-04 2011-09-29 Mitsuo Shimotani Display input device
US8724038B2 (en) 2010-10-18 2014-05-13 Qualcomm Mems Technologies, Inc. Wraparound assembly for combination touch, handwriting and fingerprint sensor
US8970537B1 (en) 2013-09-30 2015-03-03 Synaptics Incorporated Matrix sensor for image touch sensing
US9024910B2 (en) 2012-04-23 2015-05-05 Qualcomm Mems Technologies, Inc. Touchscreen with bridged force-sensitive resistors
US9081453B2 (en) 2012-01-12 2015-07-14 Synaptics Incorporated Single layer capacitive imaging sensors
US9081457B2 (en) 2013-10-30 2015-07-14 Synaptics Incorporated Single-layer muti-touch capacitive imaging sensor
US9274662B2 (en) 2013-10-18 2016-03-01 Synaptics Incorporated Sensor matrix pad for performing multiple capacitive sensing techniques
US9298325B2 (en) 2013-09-30 2016-03-29 Synaptics Incorporated Processing system for a capacitive sensing device
US9459367B2 (en) 2013-10-02 2016-10-04 Synaptics Incorporated Capacitive sensor driving technique that enables hybrid sensing or equalization
US9542023B2 (en) 2013-08-07 2017-01-10 Synaptics Incorporated Capacitive sensing using matrix electrodes driven by routing traces disposed in a source line layer
US9690397B2 (en) 2014-05-20 2017-06-27 Synaptics Incorporated System and method for detecting an active pen with a matrix sensor
US9715304B2 (en) 2015-06-30 2017-07-25 Synaptics Incorporated Regular via pattern for sensor-based input device
US9720541B2 (en) 2015-06-30 2017-08-01 Synaptics Incorporated Arrangement of sensor pads and display driver pads for input device
US9778713B2 (en) 2015-01-05 2017-10-03 Synaptics Incorporated Modulating a reference voltage to preform capacitive sensing
US9798429B2 (en) 2014-02-28 2017-10-24 Synaptics Incorporated Guard electrodes in a sensing stack
US9927832B2 (en) 2014-04-25 2018-03-27 Synaptics Incorporated Input device having a reduced border region
US9939972B2 (en) 2015-04-06 2018-04-10 Synaptics Incorporated Matrix sensor with via routing
US10037112B2 (en) 2015-09-30 2018-07-31 Synaptics Incorporated Sensing an active device'S transmission using timing interleaved with display updates
US10042489B2 (en) 2013-09-30 2018-08-07 Synaptics Incorporated Matrix sensor for image touch sensing
US10067587B2 (en) 2015-12-29 2018-09-04 Synaptics Incorporated Routing conductors in an integrated display device and sensing device
US10095948B2 (en) 2015-06-30 2018-10-09 Synaptics Incorporated Modulation scheme for fingerprint sensing
US10126890B2 (en) 2015-12-31 2018-11-13 Synaptics Incorporated Single layer sensor pattern and sensing method
US10133421B2 (en) 2014-04-02 2018-11-20 Synaptics Incorporated Display stackups for matrix sensor
US10175827B2 (en) 2014-12-23 2019-01-08 Synaptics Incorporated Detecting an active pen using a capacitive sensing device
US10488994B2 (en) 2015-09-07 2019-11-26 Synaptics Incorporated Single layer capacitive sensor pattern

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442286B1 (en) * 1998-12-22 2002-08-27 Stmicroelectronics, Inc. High security flash memory and method
US7953671B2 (en) 1999-08-31 2011-05-31 American Express Travel Related Services Company, Inc. Methods and apparatus for conducting electronic transactions
US7343351B1 (en) 1999-08-31 2008-03-11 American Express Travel Related Services Company, Inc. Methods and apparatus for conducting electronic transactions
US7889052B2 (en) 2001-07-10 2011-02-15 Xatra Fund Mx, Llc Authorizing payment subsequent to RF transactions
WO2003007049A1 (en) * 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US6643389B1 (en) * 2000-03-28 2003-11-04 Stmicroelectronics, Inc. Narrow array capacitive fingerprint imager
AU2002228809A1 (en) * 2000-12-05 2002-06-18 Validity, Inc. Swiped aperture capacitive fingerprint sensing systems and methods
JP2004534217A (en) 2001-04-27 2004-11-11 アトルア テクノロジーズ インコーポレイテッド Capacitive sensor system with improved capacitance measurement sensitivity
US7259573B2 (en) * 2001-05-22 2007-08-21 Atrua Technologies, Inc. Surface capacitance sensor system using buried stimulus electrode
JP2005516377A (en) * 2001-05-22 2005-06-02 アトルア テクノロジーズ インコーポレイテッド Improved connection assembly for integrated circuit sensors
US7725427B2 (en) 2001-05-25 2010-05-25 Fred Bishop Recurrent billing maintenance with radio frequency payment devices
US7735725B1 (en) 2001-07-10 2010-06-15 Fred Bishop Processing an RF transaction using a routing number
US8548927B2 (en) 2001-07-10 2013-10-01 Xatra Fund Mx, Llc Biometric registration for facilitating an RF transaction
US8284025B2 (en) 2001-07-10 2012-10-09 Xatra Fund Mx, Llc Method and system for auditory recognition biometrics on a FOB
US7360689B2 (en) 2001-07-10 2008-04-22 American Express Travel Related Services Company, Inc. Method and system for proffering multiple biometrics for use with a FOB
US7249112B2 (en) 2002-07-09 2007-07-24 American Express Travel Related Services Company, Inc. System and method for assigning a funding source for a radio frequency identification device
US8001054B1 (en) 2001-07-10 2011-08-16 American Express Travel Related Services Company, Inc. System and method for generating an unpredictable number using a seeded algorithm
US7705732B2 (en) 2001-07-10 2010-04-27 Fred Bishop Authenticating an RF transaction using a transaction counter
US9024719B1 (en) 2001-07-10 2015-05-05 Xatra Fund Mx, Llc RF transaction system and method for storing user personal data
US7668750B2 (en) 2001-07-10 2010-02-23 David S Bonalle Securing RF transactions using a transactions counter
US9454752B2 (en) 2001-07-10 2016-09-27 Chartoleaux Kg Limited Liability Company Reload protocol at a transaction processing entity
US7303120B2 (en) 2001-07-10 2007-12-04 American Express Travel Related Services Company, Inc. System for biometric security using a FOB
US20040236699A1 (en) 2001-07-10 2004-11-25 American Express Travel Related Services Company, Inc. Method and system for hand geometry recognition biometrics on a fob
US8294552B2 (en) 2001-07-10 2012-10-23 Xatra Fund Mx, Llc Facial scan biometrics on a payment device
US9031880B2 (en) 2001-07-10 2015-05-12 Iii Holdings 1, Llc Systems and methods for non-traditional payment using biometric data
US6941004B2 (en) * 2001-12-06 2005-09-06 Motorola, Inc. Method and apparatus for asperity sensing and storage
US6805287B2 (en) 2002-09-12 2004-10-19 American Express Travel Related Services Company, Inc. System and method for converting a stored value card to a credit card
EP1445577A1 (en) * 2003-01-30 2004-08-11 ALSTOM Technology Ltd A method and an apparatus for determining the distance between a collimator lens and an object
JP3775601B2 (en) * 2003-04-17 2006-05-17 セイコーエプソン株式会社 Capacitance detection device and driving method thereof, fingerprint sensor, and biometric authentication device
JP3858865B2 (en) * 2003-08-29 2006-12-20 セイコーエプソン株式会社 Capacitance detection device
US7028893B2 (en) * 2003-12-17 2006-04-18 Motorola, Inc. Fingerprint based smartcard
US8175345B2 (en) 2004-04-16 2012-05-08 Validity Sensors, Inc. Unitized ergonomic two-dimensional fingerprint motion tracking device and method
US8229184B2 (en) 2004-04-16 2012-07-24 Validity Sensors, Inc. Method and algorithm for accurate finger motion tracking
US8358815B2 (en) 2004-04-16 2013-01-22 Validity Sensors, Inc. Method and apparatus for two-dimensional finger motion tracking and control
US8447077B2 (en) 2006-09-11 2013-05-21 Validity Sensors, Inc. Method and apparatus for fingerprint motion tracking using an in-line array
US8131026B2 (en) 2004-04-16 2012-03-06 Validity Sensors, Inc. Method and apparatus for fingerprint image reconstruction
US8165355B2 (en) 2006-09-11 2012-04-24 Validity Sensors, Inc. Method and apparatus for fingerprint motion tracking using an in-line array for use in navigation applications
EP1754180A1 (en) * 2004-04-16 2007-02-21 Validity Sensors Inc. Finger position sensing methods and apparatus
US7751601B2 (en) * 2004-10-04 2010-07-06 Validity Sensors, Inc. Fingerprint sensing assemblies and methods of making
EP1747525A2 (en) 2004-04-23 2007-01-31 Validity Sensors Inc. Methods and apparatus for acquiring a swiped fingerprint image
US6970031B1 (en) 2004-05-28 2005-11-29 Hewlett-Packard Development Company, L.P. Method and apparatus for reducing charge injection in control of MEMS electrostatic actuator array
US20060016868A1 (en) * 2004-07-01 2006-01-26 American Express Travel Related Services Company, Inc. Method and system for hand geometry recognition biometrics on a smartcard
US7318550B2 (en) 2004-07-01 2008-01-15 American Express Travel Related Services Company, Inc. Biometric safeguard method for use with a smartcard
US7551159B2 (en) 2004-08-27 2009-06-23 Idc, Llc System and method of sensing actuation and release voltages of an interferometric modulator
US7889163B2 (en) 2004-08-27 2011-02-15 Qualcomm Mems Technologies, Inc. Drive method for MEMS devices
US20060141804A1 (en) * 2004-12-28 2006-06-29 Goodman Cathryn E Method and apparatus to facilitate electrostatic discharge resiliency
US7460697B2 (en) * 2005-07-19 2008-12-02 Validity Sensors, Inc. Electronic fingerprint sensor with differential noise cancellation
US20070025599A1 (en) * 2005-07-26 2007-02-01 Garcia Carl N Sensor array spherical member barrier apparatus and method
US8107212B2 (en) 2007-04-30 2012-01-31 Validity Sensors, Inc. Apparatus and method for protecting fingerprint sensing circuitry from electrostatic discharge
US8290150B2 (en) 2007-05-11 2012-10-16 Validity Sensors, Inc. Method and system for electronically securing an electronic device using physically unclonable functions
JP2009054993A (en) 2007-08-02 2009-03-12 Tokyo Electron Ltd Tool for detecting position
JP2009049662A (en) * 2007-08-17 2009-03-05 Toshiba Corp Information processor
US7863908B2 (en) * 2007-11-16 2011-01-04 Infineon Technologies Ag Current measurement based on a charge in a capacitor
US8204281B2 (en) 2007-12-14 2012-06-19 Validity Sensors, Inc. System and method to remove artifacts from fingerprint sensor scans
US8276816B2 (en) 2007-12-14 2012-10-02 Validity Sensors, Inc. Smart card system with ergonomic fingerprint sensor and method of using
US8073204B2 (en) 2007-12-31 2011-12-06 Authentec, Inc. Hybrid multi-sensor biometric identification device
CN103150985A (en) 2008-02-11 2013-06-12 高通Mems科技公司 Measurement and apparatus for electrical measurement of electrical drive parameters for MEMS based display
US8116540B2 (en) 2008-04-04 2012-02-14 Validity Sensors, Inc. Apparatus and method for reducing noise in fingerprint sensing circuits
US8005276B2 (en) 2008-04-04 2011-08-23 Validity Sensors, Inc. Apparatus and method for reducing parasitic capacitive coupling and noise in fingerprint sensing circuits
US8698594B2 (en) 2008-07-22 2014-04-15 Synaptics Incorporated System, device and method for securing a user device component by authenticating the user of a biometric sensor by performance of a replication of a portion of an authentication process performed at a remote computing device
US8384399B2 (en) * 2008-08-28 2013-02-26 Infineon Technologies Ag System including capacitively coupled electrodes and circuits in a network
US8391568B2 (en) 2008-11-10 2013-03-05 Validity Sensors, Inc. System and method for improved scanning of fingerprint edges
US8487639B1 (en) * 2008-11-21 2013-07-16 Cypress Semiconductor Corporation Receive demodulator for capacitive sensing
US8278946B2 (en) 2009-01-15 2012-10-02 Validity Sensors, Inc. Apparatus and method for detecting finger activity on a fingerprint sensor
US8600122B2 (en) 2009-01-15 2013-12-03 Validity Sensors, Inc. Apparatus and method for culling substantially redundant data in fingerprint sensing circuits
KR20110113746A (en) * 2009-01-23 2011-10-18 퀄컴 엠이엠스 테크놀로지스, 인크. Integrated light emitting and light detecting device
US8374407B2 (en) 2009-01-28 2013-02-12 Validity Sensors, Inc. Live finger detection
US8866500B2 (en) 2009-03-26 2014-10-21 Cypress Semiconductor Corporation Multi-functional capacitance sensing circuit with a current conveyor
US9336428B2 (en) 2009-10-30 2016-05-10 Synaptics Incorporated Integrated fingerprint sensor and display
US9274553B2 (en) 2009-10-30 2016-03-01 Synaptics Incorporated Fingerprint sensor and integratable electronic display
US9400911B2 (en) 2009-10-30 2016-07-26 Synaptics Incorporated Fingerprint sensor and integratable electronic display
US8421890B2 (en) 2010-01-15 2013-04-16 Picofield Technologies, Inc. Electronic imager using an impedance sensor grid array and method of making
US8791792B2 (en) 2010-01-15 2014-07-29 Idex Asa Electronic imager using an impedance sensor grid array mounted on or about a switch and method of making
US8866347B2 (en) 2010-01-15 2014-10-21 Idex Asa Biometric image sensing
US9666635B2 (en) 2010-02-19 2017-05-30 Synaptics Incorporated Fingerprint sensing circuit
US8716613B2 (en) 2010-03-02 2014-05-06 Synaptics Incoporated Apparatus and method for electrostatic discharge protection
US9166581B2 (en) * 2010-03-25 2015-10-20 Microchip Technology Germany Gmbh Electrode device, circuit arrangement and method for the approach and touch detection
US9001040B2 (en) 2010-06-02 2015-04-07 Synaptics Incorporated Integrated fingerprint sensor and navigation device
US8331096B2 (en) 2010-08-20 2012-12-11 Validity Sensors, Inc. Fingerprint acquisition expansion card apparatus
US8594393B2 (en) 2011-01-26 2013-11-26 Validity Sensors System for and method of image reconstruction with dual line scanner using line counts
US8538097B2 (en) 2011-01-26 2013-09-17 Validity Sensors, Inc. User input utilizing dual line scanner apparatus and method
GB2489100A (en) 2011-03-16 2012-09-19 Validity Sensors Inc Wafer-level packaging for a fingerprint sensor
US9268441B2 (en) 2011-04-05 2016-02-23 Parade Technologies, Ltd. Active integrator for a capacitive sense array
US10043052B2 (en) 2011-10-27 2018-08-07 Synaptics Incorporated Electronic device packages and methods
US9195877B2 (en) 2011-12-23 2015-11-24 Synaptics Incorporated Methods and devices for capacitive image sensing
US9785299B2 (en) 2012-01-03 2017-10-10 Synaptics Incorporated Structures and manufacturing methods for glass covered electronic devices
US9137438B2 (en) 2012-03-27 2015-09-15 Synaptics Incorporated Biometric object sensor and method
US9251329B2 (en) 2012-03-27 2016-02-02 Synaptics Incorporated Button depress wakeup and wakeup strategy
US9268991B2 (en) 2012-03-27 2016-02-23 Synaptics Incorporated Method of and system for enrolling and matching biometric data
US9600709B2 (en) 2012-03-28 2017-03-21 Synaptics Incorporated Methods and systems for enrolling biometric data
US9152838B2 (en) 2012-03-29 2015-10-06 Synaptics Incorporated Fingerprint sensor packagings and methods
KR102245293B1 (en) 2012-04-10 2021-04-28 이덱스 바이오메트릭스 아사 Biometric Sensing
US9665762B2 (en) 2013-01-11 2017-05-30 Synaptics Incorporated Tiered wakeup strategy
US9495046B2 (en) 2013-10-23 2016-11-15 Synaptics Incorporated Parasitic capacitance filter for single-layer capacitive imaging sensors
US9728567B2 (en) 2013-12-02 2017-08-08 United Microelectronics Corp. Semiconductor sensor device
US9152841B1 (en) * 2014-03-24 2015-10-06 Fingerprint Cards Ab Capacitive fingerprint sensor with improved sensing element
KR101659492B1 (en) * 2014-11-10 2016-09-23 한신대학교 산학협력단 Charge Transfer Circuit for Capacitive Sensing and Apparatus For Detecting Fingerprint Having Thereof
US10102412B2 (en) * 2016-11-17 2018-10-16 Fingerprint Cards Ab Fingerprint sensing with different capacitive configurations

Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493855A (en) 1967-04-27 1970-02-03 Industrial Nucleonics Corp Capacitive moisture gauge with signal level control using a differential capacitor in the input and feedback circuits of an amplifier
US3641431A (en) 1968-10-01 1972-02-08 Gleason Works Method for inspecting and adjusting cutter blades
US3781855A (en) 1970-03-13 1973-12-25 Identification Systems Inc Fingerprint identification system and method
US3873927A (en) 1973-11-05 1975-03-25 Surface Systems System for detecting wet and icy surface conditions
US3967310A (en) 1968-10-09 1976-06-29 Hitachi, Ltd. Semiconductor device having controlled surface charges by passivation films formed thereon
US4016490A (en) 1974-12-19 1977-04-05 Robert Bosch G.M.B.H. Capacitative proximity sensing system
US4096758A (en) 1977-05-24 1978-06-27 Moore Products Co. Pressure to electric transducer
US4161743A (en) 1977-03-28 1979-07-17 Tokyo Shibaura Electric Co., Ltd. Semiconductor device with silicon carbide-glass-silicon carbide passivating overcoat
US4183060A (en) 1976-03-19 1980-01-08 Rca Corporation Capacitance distance sensor apparatus for video disc player/recorder
US4353056A (en) 1980-06-05 1982-10-05 Siemens Corporation Capacitive fingerprint sensor
US4394773A (en) 1980-07-21 1983-07-19 Siemens Corporation Fingerprint sensor
US4428670A (en) 1980-08-11 1984-01-31 Siemens Corporation Fingerprint sensing device for deriving an electric signal
US4429413A (en) 1981-07-30 1984-01-31 Siemens Corporation Fingerprint sensor
US4513298A (en) 1983-05-25 1985-04-23 Hewlett-Packard Company Thermal ink jet printhead
US4571543A (en) 1983-03-28 1986-02-18 Southwest Medical Products, Inc. Specific material detection and measuring device
US4577345A (en) 1984-04-05 1986-03-18 Igor Abramov Fingerprint sensor
US4626774A (en) 1982-08-27 1986-12-02 Endress U. Hauser Gmbh U. Co. Method and arrangement for measuring the contamination of a capacitive dew-point sensor
US4656871A (en) 1985-07-16 1987-04-14 Motorola, Inc. Capacitor sensor and method
EP0226082A1 (en) 1985-12-13 1987-06-24 Flowtec Ag Capacity measuring circuit
US4763063A (en) 1985-07-26 1988-08-09 Allied-Signal Inc. Compact digital pressure sensor circuitry
US4814691A (en) 1985-08-09 1989-03-21 Washington Research Foundation Fringe field capacitive sensor for measuring profile of a surface
US4935207A (en) 1986-04-01 1990-06-19 The Johns Hopkins University Capacitive chemical sensor using an ion exchange surface
US4958129A (en) 1989-03-07 1990-09-18 Ade Corporation Prealigner probe
EP0397244A2 (en) 1989-05-08 1990-11-14 Philips Electronics Uk Limited Touch sensor array systems and display systems incorporating such
US5028876A (en) 1989-01-30 1991-07-02 Dresser Industries, Inc. Precision capacitive transducer circuits and methods
EP0455070B1 (en) 1990-05-02 1994-06-22 Siemens Aktiengesellschaft Capacitive sensor with frequency output
US5325442A (en) 1990-05-18 1994-06-28 U.S. Philips Corporation Fingerprint sensing device and recognition system having predetermined electrode activation
EP0454883B1 (en) 1990-05-02 1994-08-17 Siemens Aktiengesellschaft Capacitive sensor
US5373181A (en) 1992-10-26 1994-12-13 Siemens Aktiengesellschaft Sensor for sensing fingerpaints and method for producing the sensor
GB2279756A (en) 1990-11-16 1995-01-11 Moonstone Technology Ltd Device for determining the presence and/or characteristics of an object or a substance
GB2279757A (en) 1990-11-16 1995-01-11 Moonstone Technology Ltd Device for determining the presence and/or characteristics of an object or a substance
US5430381A (en) 1989-09-29 1995-07-04 Antivision Systems Corp. Apparatus for electrostatically imaging the surface of an object located nearby
US5467022A (en) 1992-01-16 1995-11-14 Aisin Seiki Kabushiki Kaisha Dielectric detecting system
EP0710593A1 (en) 1994-11-07 1996-05-08 Forschungszentrum Jülich Gmbh Moisture sensor
US5530581A (en) 1995-05-31 1996-06-25 Eic Laboratories, Inc. Protective overlayer material and electro-optical coating using same
EP0779497A2 (en) 1995-12-15 1997-06-18 Lucent Technologies Inc. Fingerprint acquisition sensor
EP0786745A2 (en) 1996-01-26 1997-07-30 Harris Corporation Enhanced security fingerprint sensor package and related methods
US5659626A (en) 1994-10-20 1997-08-19 Calspan Corporation Fingerprint identification system
EP0790479A1 (en) 1996-02-14 1997-08-20 STMicroelectronics S.r.l. Capacitive distance sensor, particularly for acquiring fingerprints
EP0791899A2 (en) 1996-01-26 1997-08-27 Harris Corporation Electric field fingerprint sensor apparatus and related methods
GB2312514A (en) 1996-02-13 1997-10-29 Sensatech Ltd Capacitive proximity or profile detector
WO1997040744A1 (en) 1996-04-26 1997-11-06 Philips Electronics N.V. Fingerprint sensing devices and systems incorporating such
US5778089A (en) 1996-03-04 1998-07-07 Dew Engineering And Development Limited Driver circuit for a contact imaging array
US5828773A (en) 1996-01-26 1998-10-27 Harris Corporation Fingerprint sensing method with finger position indication
WO1998049691A2 (en) 1997-04-29 1998-11-05 Koninklijke Philips Electronics N.V. Fingerprint sensing devices and systems incorporating such
US5844415A (en) 1994-02-03 1998-12-01 Massachusetts Institute Of Technology Method for three-dimensional positions, orientation and mass distribution
US5869791A (en) 1995-04-18 1999-02-09 U.S. Philips Corporation Method and apparatus for a touch sensing device having a thin film insulation layer about the periphery of each sensing element
US5903225A (en) 1997-05-16 1999-05-11 Harris Corporation Access control system including fingerprint sensor enrollment and associated methods
WO1999028701A1 (en) 1997-12-04 1999-06-10 Koninklijke Philips Electronics N.V. Electronic apparatus comprising fingerprint sensing devices
US5920640A (en) 1997-05-16 1999-07-06 Harris Corporation Fingerprint sensor and token reader and associated methods
US5936412A (en) 1994-02-03 1999-08-10 Massachusetts Institute Of Technology Method for resolving presence, orientation and activity in a defined space
US5973623A (en) 1997-10-21 1999-10-26 Stmicroelectronics, Inc. Solid state capacitive switch
US6011859A (en) 1997-07-02 2000-01-04 Stmicroelectronics, Inc. Solid state fingerprint sensor packaging apparatus and method
US6114862A (en) 1996-02-14 2000-09-05 Stmicroelectronics, Inc. Capacitive distance sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US378155A (en) * 1888-02-21 Edwaed t
GB8624531D0 (en) 1986-10-13 1986-11-19 Emco Wheaton Fluid transport containers

Patent Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493855A (en) 1967-04-27 1970-02-03 Industrial Nucleonics Corp Capacitive moisture gauge with signal level control using a differential capacitor in the input and feedback circuits of an amplifier
US3641431A (en) 1968-10-01 1972-02-08 Gleason Works Method for inspecting and adjusting cutter blades
US3967310A (en) 1968-10-09 1976-06-29 Hitachi, Ltd. Semiconductor device having controlled surface charges by passivation films formed thereon
US3781855A (en) 1970-03-13 1973-12-25 Identification Systems Inc Fingerprint identification system and method
US3873927A (en) 1973-11-05 1975-03-25 Surface Systems System for detecting wet and icy surface conditions
US4016490A (en) 1974-12-19 1977-04-05 Robert Bosch G.M.B.H. Capacitative proximity sensing system
US4183060A (en) 1976-03-19 1980-01-08 Rca Corporation Capacitance distance sensor apparatus for video disc player/recorder
US4161743A (en) 1977-03-28 1979-07-17 Tokyo Shibaura Electric Co., Ltd. Semiconductor device with silicon carbide-glass-silicon carbide passivating overcoat
US4096758A (en) 1977-05-24 1978-06-27 Moore Products Co. Pressure to electric transducer
US4353056A (en) 1980-06-05 1982-10-05 Siemens Corporation Capacitive fingerprint sensor
US4394773A (en) 1980-07-21 1983-07-19 Siemens Corporation Fingerprint sensor
US4428670A (en) 1980-08-11 1984-01-31 Siemens Corporation Fingerprint sensing device for deriving an electric signal
US4429413A (en) 1981-07-30 1984-01-31 Siemens Corporation Fingerprint sensor
US4626774A (en) 1982-08-27 1986-12-02 Endress U. Hauser Gmbh U. Co. Method and arrangement for measuring the contamination of a capacitive dew-point sensor
US4571543A (en) 1983-03-28 1986-02-18 Southwest Medical Products, Inc. Specific material detection and measuring device
US4513298A (en) 1983-05-25 1985-04-23 Hewlett-Packard Company Thermal ink jet printhead
US4577345A (en) 1984-04-05 1986-03-18 Igor Abramov Fingerprint sensor
US4656871A (en) 1985-07-16 1987-04-14 Motorola, Inc. Capacitor sensor and method
US4763063A (en) 1985-07-26 1988-08-09 Allied-Signal Inc. Compact digital pressure sensor circuitry
US4814691A (en) 1985-08-09 1989-03-21 Washington Research Foundation Fringe field capacitive sensor for measuring profile of a surface
EP0226082A1 (en) 1985-12-13 1987-06-24 Flowtec Ag Capacity measuring circuit
US4935207A (en) 1986-04-01 1990-06-19 The Johns Hopkins University Capacitive chemical sensor using an ion exchange surface
US5028876A (en) 1989-01-30 1991-07-02 Dresser Industries, Inc. Precision capacitive transducer circuits and methods
US4958129A (en) 1989-03-07 1990-09-18 Ade Corporation Prealigner probe
EP0397244A2 (en) 1989-05-08 1990-11-14 Philips Electronics Uk Limited Touch sensor array systems and display systems incorporating such
EP0397244B1 (en) 1989-05-08 1995-12-13 Philips Electronics Uk Limited Touch sensor array systems and display systems incorporating such
US5430381A (en) 1989-09-29 1995-07-04 Antivision Systems Corp. Apparatus for electrostatically imaging the surface of an object located nearby
EP0455070B1 (en) 1990-05-02 1994-06-22 Siemens Aktiengesellschaft Capacitive sensor with frequency output
EP0454883B1 (en) 1990-05-02 1994-08-17 Siemens Aktiengesellschaft Capacitive sensor
US5325442A (en) 1990-05-18 1994-06-28 U.S. Philips Corporation Fingerprint sensing device and recognition system having predetermined electrode activation
GB2279756A (en) 1990-11-16 1995-01-11 Moonstone Technology Ltd Device for determining the presence and/or characteristics of an object or a substance
GB2279757A (en) 1990-11-16 1995-01-11 Moonstone Technology Ltd Device for determining the presence and/or characteristics of an object or a substance
US5467022A (en) 1992-01-16 1995-11-14 Aisin Seiki Kabushiki Kaisha Dielectric detecting system
US5373181A (en) 1992-10-26 1994-12-13 Siemens Aktiengesellschaft Sensor for sensing fingerpaints and method for producing the sensor
US6025726A (en) 1994-02-03 2000-02-15 Massachusetts Institute Of Technology Method and apparatus for determining three-dimensional position, orientation and mass distribution
US5936412A (en) 1994-02-03 1999-08-10 Massachusetts Institute Of Technology Method for resolving presence, orientation and activity in a defined space
US6051981A (en) 1994-02-03 2000-04-18 Massachusetts Institute Of Technology Method and apparatus for characterizing movement of a mass within a defined space
US6066954A (en) 1994-02-03 2000-05-23 Massachusetts Institute Of Technology Apparatus for resolving presence and orientation within a defined space
US5844415A (en) 1994-02-03 1998-12-01 Massachusetts Institute Of Technology Method for three-dimensional positions, orientation and mass distribution
US5659626A (en) 1994-10-20 1997-08-19 Calspan Corporation Fingerprint identification system
EP0710593A1 (en) 1994-11-07 1996-05-08 Forschungszentrum Jülich Gmbh Moisture sensor
US5869791A (en) 1995-04-18 1999-02-09 U.S. Philips Corporation Method and apparatus for a touch sensing device having a thin film insulation layer about the periphery of each sensing element
US5530581A (en) 1995-05-31 1996-06-25 Eic Laboratories, Inc. Protective overlayer material and electro-optical coating using same
EP0779497A2 (en) 1995-12-15 1997-06-18 Lucent Technologies Inc. Fingerprint acquisition sensor
US5828773A (en) 1996-01-26 1998-10-27 Harris Corporation Fingerprint sensing method with finger position indication
US5852670A (en) 1996-01-26 1998-12-22 Harris Corporation Fingerprint sensing apparatus with finger position indication
US5862248A (en) 1996-01-26 1999-01-19 Harris Corporation Integrated circuit device having an opening exposing the integrated circuit die and related methods
EP0791899A2 (en) 1996-01-26 1997-08-27 Harris Corporation Electric field fingerprint sensor apparatus and related methods
EP0786745A2 (en) 1996-01-26 1997-07-30 Harris Corporation Enhanced security fingerprint sensor package and related methods
GB2312514A (en) 1996-02-13 1997-10-29 Sensatech Ltd Capacitive proximity or profile detector
US6114862A (en) 1996-02-14 2000-09-05 Stmicroelectronics, Inc. Capacitive distance sensor
EP0790479A1 (en) 1996-02-14 1997-08-20 STMicroelectronics S.r.l. Capacitive distance sensor, particularly for acquiring fingerprints
US5778089A (en) 1996-03-04 1998-07-07 Dew Engineering And Development Limited Driver circuit for a contact imaging array
WO1997040744A1 (en) 1996-04-26 1997-11-06 Philips Electronics N.V. Fingerprint sensing devices and systems incorporating such
WO1998049691A2 (en) 1997-04-29 1998-11-05 Koninklijke Philips Electronics N.V. Fingerprint sensing devices and systems incorporating such
US5920640A (en) 1997-05-16 1999-07-06 Harris Corporation Fingerprint sensor and token reader and associated methods
US5903225A (en) 1997-05-16 1999-05-11 Harris Corporation Access control system including fingerprint sensor enrollment and associated methods
US6011859A (en) 1997-07-02 2000-01-04 Stmicroelectronics, Inc. Solid state fingerprint sensor packaging apparatus and method
US5973623A (en) 1997-10-21 1999-10-26 Stmicroelectronics, Inc. Solid state capacitive switch
WO1999028701A1 (en) 1997-12-04 1999-06-10 Koninklijke Philips Electronics N.V. Electronic apparatus comprising fingerprint sensing devices

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Sarma and Barranger, Capacitance-Type Blade-Tip Clearance Measurement System Using a Dual Amplifier with Ramp/DC Inputs and Integration, IEEE 41(5):674-678, Oct. 1992.
Tartagni et al., "A 390dpi Live Fingerprint Imager Based on Feedback Capacitive Sensing Scheme," IEEE International Solid-State Circuits Conference, Feb. 7, 1997, 5 pp.
Woffenbuttel and Regtien, "Integrated Tactile Imager with an Intrinsic Contour Detection Option," Sensors and Actuators 16:141-153, 1989.
Young et al., "Novel Fingerprint Scanning Arrays Using Polysilicon TFT's on Glass and Polymer Substrates," IEEE Electron Device Letters, 8(1):19-20, 1997.

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062485A1 (en) * 2003-08-25 2005-03-24 Seiko Epson Corporation Capacitance detection apparatus, driving method for the same, fingerprint sensor, and biometric authentication apparatus
US7126349B2 (en) * 2003-08-25 2006-10-24 Seiko Epson Corporation Capacitance detection apparatus, driving method for the same, fingerprint sensor, and biometric authentication apparatus
US20050088185A1 (en) * 2003-09-05 2005-04-28 Seiko Epson Corporation Electrostatic capacitance sensing device and method of driving the same
US7091726B2 (en) * 2003-09-05 2006-08-15 Seiko Epson Corporation Electrostatic capacitance sensing device and method of driving the same
US20110234639A1 (en) * 2008-12-04 2011-09-29 Mitsuo Shimotani Display input device
US8677287B2 (en) * 2008-12-04 2014-03-18 Mitsubishi Electric Corporation Display input device and navigation device
US8724038B2 (en) 2010-10-18 2014-05-13 Qualcomm Mems Technologies, Inc. Wraparound assembly for combination touch, handwriting and fingerprint sensor
US8743082B2 (en) 2010-10-18 2014-06-03 Qualcomm Mems Technologies, Inc. Controller architecture for combination touch, handwriting and fingerprint sensor
US9081453B2 (en) 2012-01-12 2015-07-14 Synaptics Incorporated Single layer capacitive imaging sensors
US9817533B2 (en) 2012-01-12 2017-11-14 Synaptics Incorporated Single layer capacitive imaging sensors
US9182861B2 (en) 2012-01-12 2015-11-10 Synaptics Incoporated Single layer capacitive imaging sensors
US9024910B2 (en) 2012-04-23 2015-05-05 Qualcomm Mems Technologies, Inc. Touchscreen with bridged force-sensitive resistors
US9542023B2 (en) 2013-08-07 2017-01-10 Synaptics Incorporated Capacitive sensing using matrix electrodes driven by routing traces disposed in a source line layer
US9552089B2 (en) 2013-08-07 2017-01-24 Synaptics Incorporated Capacitive sensing using a matrix electrode pattern
US10042489B2 (en) 2013-09-30 2018-08-07 Synaptics Incorporated Matrix sensor for image touch sensing
US9298325B2 (en) 2013-09-30 2016-03-29 Synaptics Incorporated Processing system for a capacitive sensing device
US10088951B2 (en) 2013-09-30 2018-10-02 Synaptics Incorporated Matrix sensor for image touch sensing
US9760212B2 (en) 2013-09-30 2017-09-12 Synaptics Incorported Matrix sensor for image touch sensing
US8970537B1 (en) 2013-09-30 2015-03-03 Synaptics Incorporated Matrix sensor for image touch sensing
US9778790B2 (en) 2013-09-30 2017-10-03 Synaptics Incorporated Matrix sensor for image touch sensing
US9459367B2 (en) 2013-10-02 2016-10-04 Synaptics Incorporated Capacitive sensor driving technique that enables hybrid sensing or equalization
US9274662B2 (en) 2013-10-18 2016-03-01 Synaptics Incorporated Sensor matrix pad for performing multiple capacitive sensing techniques
US9483151B2 (en) 2013-10-30 2016-11-01 Synaptics Incorporated Single layer multi-touch capacitive imaging sensor
US9081457B2 (en) 2013-10-30 2015-07-14 Synaptics Incorporated Single-layer muti-touch capacitive imaging sensor
US9798429B2 (en) 2014-02-28 2017-10-24 Synaptics Incorporated Guard electrodes in a sensing stack
US10133421B2 (en) 2014-04-02 2018-11-20 Synaptics Incorporated Display stackups for matrix sensor
US9927832B2 (en) 2014-04-25 2018-03-27 Synaptics Incorporated Input device having a reduced border region
US9690397B2 (en) 2014-05-20 2017-06-27 Synaptics Incorporated System and method for detecting an active pen with a matrix sensor
US10175827B2 (en) 2014-12-23 2019-01-08 Synaptics Incorporated Detecting an active pen using a capacitive sensing device
US10990148B2 (en) 2015-01-05 2021-04-27 Synaptics Incorporated Central receiver for performing capacitive sensing
US9778713B2 (en) 2015-01-05 2017-10-03 Synaptics Incorporated Modulating a reference voltage to preform capacitive sensing
US10795471B2 (en) 2015-01-05 2020-10-06 Synaptics Incorporated Modulating a reference voltage to perform capacitive sensing
US11693462B2 (en) 2015-01-05 2023-07-04 Synaptics Incorporated Central receiver for performing capacitive sensing
US9939972B2 (en) 2015-04-06 2018-04-10 Synaptics Incorporated Matrix sensor with via routing
US9720541B2 (en) 2015-06-30 2017-08-01 Synaptics Incorporated Arrangement of sensor pads and display driver pads for input device
US10095948B2 (en) 2015-06-30 2018-10-09 Synaptics Incorporated Modulation scheme for fingerprint sensing
US9715304B2 (en) 2015-06-30 2017-07-25 Synaptics Incorporated Regular via pattern for sensor-based input device
US10488994B2 (en) 2015-09-07 2019-11-26 Synaptics Incorporated Single layer capacitive sensor pattern
US10037112B2 (en) 2015-09-30 2018-07-31 Synaptics Incorporated Sensing an active device'S transmission using timing interleaved with display updates
US10067587B2 (en) 2015-12-29 2018-09-04 Synaptics Incorporated Routing conductors in an integrated display device and sensing device
US10126890B2 (en) 2015-12-31 2018-11-13 Synaptics Incorporated Single layer sensor pattern and sensing method
US11093058B2 (en) 2015-12-31 2021-08-17 Synaptics Incorporated Single layer sensor pattern and sensing method

Also Published As

Publication number Publication date
US6320394B1 (en) 2001-11-20
US6998855B2 (en) 2006-02-14
US20020180464A1 (en) 2002-12-05
US20040222803A1 (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US6731120B2 (en) Capacitive distance sensor
US6496021B2 (en) Method for making a capacitive distance sensor
US6362633B1 (en) Capacitive distance sensor
KR100658997B1 (en) Input device, electronic apparatus, and method for driving input device
US6538456B1 (en) Capacitive fingerprint sensor with adjustable gain
EP1343111B1 (en) Electrostatic capacitance detection device
US6333989B1 (en) Contact imaging device
US6016355A (en) Capacitive fingerprint acquisition sensor
TWI252302B (en) Capacitance detection device and drive method thereof, fingerprint sensor, and biometrics authentication device
EP1564674A1 (en) Capacitance detection device, fingerprint sensor, biometric authentication device, and method for searching capacitance detection condition
KR100393191B1 (en) Fingerprint sensor using piezoelectric membrane
Hashido et al. A capacitive fingerprint sensor chip using low-temperature poly-Si TFTs on a glass substrate and a novel and unique sensing method
US10078776B2 (en) Noise reduced capacitive fingerprint sensor and capacitive sensing unit included therein
KR100431750B1 (en) Unit fixel for capacitive semiconductor fingerprint sensor and fingerprint sensing device having the same
KR20040008670A (en) Unit fixel for capacitive fingerprint sensor and fingerprint sensing device having the same
JP2005049194A (en) Capacitance detection device and electronic instrument
Yan et al. Characteristic Comparison between Passive and Active Capacitive Fingerprint Sensors
JP2005049195A (en) Input device, electronic instrument, and driving method of input device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: UPEK, INC.,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ST MICROELECTRONICS, S.R.L.;REEL/FRAME:024341/0538

Effective date: 20040304

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R2552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: AUTHENTEC, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UPEK, INC.;REEL/FRAME:026944/0942

Effective date: 20110901

AS Assignment

Owner name: SGS-THOMSON MICROELECTRONICS S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TARTAGNI, MARCO;REEL/FRAME:028631/0758

Effective date: 19980129

AS Assignment

Owner name: AUTHENTEC, INC., FLORIDA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT DOCUMENT TO IDENTIFY UPEK, INC. AS A DELAWARE CORPORATION PREVIOUSLY RECORDED ON REEL 026944 FRAME 0942. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNOR:UPEK, INC.;REEL/FRAME:029074/0347

Effective date: 20121003

AS Assignment

Owner name: APPLE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AUTHENTEC, INC.;REEL/FRAME:035552/0286

Effective date: 20130210

FPAY Fee payment

Year of fee payment: 12