WO2010122824A1 - 位置入力装置 - Google Patents

位置入力装置 Download PDF

Info

Publication number
WO2010122824A1
WO2010122824A1 PCT/JP2010/050536 JP2010050536W WO2010122824A1 WO 2010122824 A1 WO2010122824 A1 WO 2010122824A1 JP 2010050536 W JP2010050536 W JP 2010050536W WO 2010122824 A1 WO2010122824 A1 WO 2010122824A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
detection
detected
input device
operation plate
Prior art date
Application number
PCT/JP2010/050536
Other languages
English (en)
French (fr)
Inventor
吉秋 小泉
直之 樋原
菊田 俊成
創 中居
利康 樋熊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP10766884.0A priority Critical patent/EP2423790A4/en
Priority to US13/264,438 priority patent/US9046956B2/en
Priority to JP2011510243A priority patent/JP5183801B2/ja
Priority to CN201080017590.9A priority patent/CN102414647B/zh
Publication of WO2010122824A1 publication Critical patent/WO2010122824A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • This invention relates to a position input device for determining a position where pressure is applied when pressure is applied in an operation area.
  • a transparent pressure sensor is installed on the display device that displays the operation screen, such as a touch panel, and when the user presses a button or the like displayed on the operation screen, the pressure sensor detects the pressure and displays the position where the pressure is applied.
  • the position detection method for example, two opposing resistance films of approximately the same size as the operation screen are provided on the display device as pressure sensors, and the two resistance films are in contact with each other at the position where pressure is applied. There is a method of calculating the contact position by measuring the resistance value.
  • the pressure sensor in the conventional method needs to have the same size as the operation screen, and the manufacturing cost increases as the operation screen becomes larger.
  • the brightness of the operation screen is reduced to some extent, and the operation screen becomes difficult to see.
  • Increasing the brightness of the operation screen to compensate for this increases energy consumption.
  • the present invention has been made, for example, in order to solve the above-described problems, and suppresses the manufacturing cost of the position input device and prevents the brightness of the operation screen from being lowered regardless of the size of the operation area. With the goal.
  • the position input device when a pressure is applied to an arbitrary position in the operation area, the position input device determines a pressurization position to which the pressure is applied.
  • An operation plate at least two pressure detection devices, and a pressure position determination device;
  • the operation plate is flat and has the operation region on one surface,
  • the pressure detection device detects a detection position pressure generated by a pressure applied to the pressurization position at a pressure detection position different from other pressure detection devices,
  • the pressure detection position is located outside the operation area on the operation plate,
  • the pressurization position determination device determines the pressurization position based on at least two detection position pressures detected by at least two pressure detection devices.
  • the position input device of the present invention since the pressure detection position is located outside the operation region, there is no need to arrange a pressure detection device for detecting pressure in the operation region. For this reason, even when an operation screen display device that displays an operation screen is arranged below the operation area, the brightness of the operation screen does not decrease, and the operation screen can be easily viewed. In addition, even if the operation area becomes large, it is not necessary to change the configuration of the pressure detection device, so that the manufacturing cost of the position input device can be suppressed.
  • FIG. 3 is an overall perspective view illustrating an example of an appearance of a touch panel 800 according to Embodiment 1.
  • FIG. 3 is an exploded perspective view illustrating an example of a structure of touch panel 800 in Embodiment 1.
  • FIG. 3 is an exploded perspective view illustrating an example of the structure of the main body 100 in the first embodiment.
  • FIG. 3 is a side cutaway view showing an example of the structure of touch panel 800 in Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of a pressure position determination apparatus 200 according to Embodiment 1.
  • FIG. 3 is a block configuration diagram illustrating an example of a functional block configuration of the pressure position determination apparatus 200 according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a relationship between a button display position 311 and a detection position 350 in the first embodiment.
  • FIG. 5 is a flowchart showing an example of a flow of a pressed position determination process S610 in the first embodiment.
  • FIG. 6 is an exploded perspective view illustrating an example of a structure of a main body 100 in a second embodiment.
  • FIG. 9 is a partially enlarged side view cutaway view illustrating an example of a configuration for fixing a pressure sensor 150 to a bottom plate 160 in Embodiment 3.
  • FIG. 10 is a block configuration diagram illustrating an example of a functional block configuration of a pressed position determination device 200 according to a third embodiment.
  • FIG. 14 is a diagram illustrating an example of an adjustment screen 815 generated by the screen generation unit 242 according to Embodiment 3.
  • FIG. 10 is a flowchart showing an example of a flow of sensor adjustment processing S620 in the third embodiment.
  • FIG. 10 is a block configuration diagram illustrating an example of a functional block configuration of a pressure position determination apparatus 200 according to a fourth embodiment.
  • FIG. 18 shows an example of an adjustment screen 815 generated by the screen generation unit 242 according to Embodiment 4.
  • FIG. 15 is a flowchart showing an example of a flow of sensor adjustment processing S620 in the fourth embodiment.
  • FIG. 10 is an exploded perspective view illustrating an example of a structure of a main body 100 in a fifth embodiment.
  • FIG. 10 is a block configuration diagram illustrating an example of a functional block configuration of a pressure position determination apparatus 200 according to a fifth embodiment.
  • FIG. 16 is a flowchart showing an example of a flow of a pressed position determination process S610 in the fifth embodiment. The figure which shows the balance of force in the case of two pressure detection positions. The figure which shows the balance of force in the case of three pressure detection positions.
  • FIG. 17 is an overall perspective view illustrating an example of an appearance of a touch panel 800 in Embodiment 6.
  • FIG. 18 is an exploded perspective view illustrating an example of a structure of touch panel 800 in Embodiment 6.
  • FIG. 10 is an exploded perspective view showing an example of the structure of a main body 100 in a sixth embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of an operation of a touch panel 800 in Embodiment 6.
  • FIG. 10 is a graph showing an example of detected position pressure detected by pressure sensors 150a to 150f in the sixth embodiment.
  • FIG. 20 is a flowchart showing an example of a flow of a press determination process S640 in the sixth embodiment.
  • FIG. 18 is an overall perspective view illustrating an example of an appearance of a touch panel 800 in Embodiment 7.
  • FIG. 20 is an exploded perspective view illustrating an example of a structure of touch panel 800 in Embodiment 7.
  • FIG. 20 is an exploded perspective view illustrating an example of a structure of a main body 100 in a seventh embodiment.
  • FIG. 18 is a graph showing an example of detected position pressure detected by pressure sensors 150g to 150j in the seventh embodiment.
  • FIG. 20 is a flowchart showing an example of a flow of a pressed position determination process S610 in the seventh embodiment.
  • FIG. 20 is an overall perspective view illustrating an example of an appearance of a touch panel 800 in Embodiment 8.
  • FIG. 20 is a perspective view illustrating an example of a structure of a main body 100 in a ninth embodiment.
  • FIG. 10 is an enlarged front view showing an example of the structure of a support adjustment unit 190 in the ninth embodiment.
  • FIG. 20 is an enlarged front view showing another example of the structure of the support adjustment unit 190 in the ninth embodiment.
  • FIG. 20 is an enlarged front view showing still another example of the structure of the support adjustment unit 190 in the ninth embodiment.
  • FIG. 20 is a perspective view showing still another example of the structure of the support adjustment unit 190 according to the ninth embodiment.
  • FIG. 20 is an exploded perspective view showing a structure of a support adjustment unit 190 in the ninth embodiment.
  • FIG. 20 is a side sectional view showing the movement of the support adjusting unit 190 in the ninth embodiment.
  • FIG. 20 is a plan view and a side view sectional view showing another movement of the support adjusting unit 190 in the ninth embodiment.
  • FIG. 20 is a plan view and a side view sectional view showing still another movement of the support adjusting unit 190 according to the ninth embodiment.
  • FIG. 20 is a perspective view illustrating an example of an appearance of a numerical value input device 850 according to Embodiment 10.
  • FIG. 22 is a block configuration diagram illustrating an example of a functional block configuration of a numerical value input device 850 according to Embodiment 10.
  • FIG. 25 is a flowchart showing an example of the flow of numerical value change processing S660 in the tenth embodiment.
  • Embodiment 1 FIG. Embodiment 1 will be described with reference to FIGS.
  • FIG. 1 is an overall perspective view showing an example of the appearance of touch panel 800 in this embodiment.
  • the touch panel 800 position input device, display operation device
  • the touch panel 800 is connected to an information processing device such as a computer by a signal line such as a cable (not shown) or wirelessly.
  • Touch panel 800 receives a signal representing operation screen 810 from the connected information processing apparatus.
  • Touch panel 800 displays an operation screen 810 represented by the input signal.
  • the operation screen 810 includes one or more buttons 811.
  • the touch panel 800 determines the button 811 pressed by the user.
  • Touch panel 800 transmits data representing the determined determination result to the connected information processing apparatus.
  • FIG. 2 is an exploded perspective view showing an example of the structure of the touch panel 800 in this embodiment.
  • the touch panel 800 includes a housing 830, a decorative board 820, and the main body 100.
  • the housing 830 is a box-like case having an open top surface, and stores the main body 100 therein.
  • the main body 100 displays the operation screen 810 and detects that the user has pressed the button 811.
  • the decorative plate 820 (outside area protection unit) is a lid that covers the opening of the housing 830.
  • the decorative board 820 has a frame shape formed of, for example, an acrylic board.
  • the decorative plate 820 has an opening 821 at the center.
  • the opening 821 has the same shape as the operation screen 810, and the user can see the operation screen 810 through the opening 821.
  • the decorative board 820 is painted on the lower surface, for example, so that only the operation screen 810 can be seen. A user can touch the main body 100 through the opening 821.
  • the decorative plate 820 protects the main body 100 so that the pressure is not transmitted to the main body 100 even if the user presses a portion other than the opening 821.
  • FIG. 3 is an exploded perspective view showing an example of the structure of the main body 100 in this embodiment.
  • the main body 100 includes an operation plate 110, an operation screen display device 140, and a bottom plate 160.
  • the operation screen display device 140 is a device that displays an operation screen 810 such as a liquid crystal display panel (LCD).
  • the operation screen display device 140 includes a display unit 141 and a frame unit 142.
  • the display unit 141 is a part that actually displays the operation screen 810.
  • the frame part 142 is a part around the display part 141.
  • the operation screen display device 140 is fixed to the bottom plate 160 (lower plate) using a fixing member (fixing jig) such as a screw.
  • Operation screen display device 140 receives a signal representing operation screen 810 displayed from an information processing device such as a computer.
  • the operation screen display device 140 displays an operation screen 810 represented by the input signal.
  • the operation plate 110 has a flat plate shape and is formed of a transparent material such as an acrylic plate.
  • the operation plate 110 has a central portion 111 and an outer edge portion 112.
  • the central part 111 has the same shape as the operation screen 810.
  • the upper surface of the central portion 111 is an operation area that the user touches for button operation.
  • the central part 111 is thicker than the outer edge part 112.
  • the outer edge portion 112 is provided with six detection position support portions 120a to 120f (columns) and two operation plate support portions 131.
  • the detection position support portions 120a to 120f and the operation plate support portion 131 may be formed integrally with the operation plate 110, or may be configured as separate parts from the operation plate 110 and use a fixing member such as a screw. Further, it may be fixed to the operation plate 110.
  • the bottom plate 160 is provided with six pressure sensors 150a to 150f and two operation plate support receiving portions 132.
  • the operation plate support receiving portion 132 may be formed integrally with the bottom plate 160, or may be configured as a separate component from the bottom plate 160 and fixed to the 160 using a fixing member such as a screw or a double-sided tape. It may be.
  • the pressure sensors 150a to 150f are provided at positions that contact the detection position support portions 120a to 120f.
  • the detection position support portions 120a to 120f support the operation plate 110, secure a space between the bottom plate 160 and the operation plate 110, and transmit the pressure of the user pressing the operation plate 110 to the pressure sensors 150a to 150f. To do.
  • the pressure sensors 150a to 150f detect the pressure applied to the operation plate 110 via the detection position support portions 120a to 120f.
  • Pressure sensors 150a to 150f output signals representing the detected pressure.
  • the specific configuration of the pressure sensors 150a to 150f is not particularly limited, but can be configured using, for example, a membrane switch.
  • a pair of electrodes is provided on the lower side, a resistor is provided on the upper side, and when pressure is applied, the upper resistor comes into contact with the lower pair of electrodes, thereby establishing electrical connection between the electrodes.
  • the contact area between the resistor and the electrode increases, and the resistance value between the electrodes decreases.
  • the pressure sensors 150a to 150f generate, for example, a voltage proportional to the resistance value between the electrodes, and output it as a signal representing the detected pressure.
  • the operation plate support receiving portion 132 is provided at a position that engages with the operation plate support portion 131.
  • the operation plate support portion 131 and the operation plate support receiving portion 132 support the operation plate 110 and secure a space between the bottom plate 160 and the operation plate 110.
  • the two operation plate support portions 131 have a semi-cylindrical shape having a common axis, and the operation plate 110 is rotated around the axis of the operation plate support portion 131 by the operation plate support portion 131 and the operation plate support receiving portion 132. It is held freely.
  • a total of four elastic bodies 133 are provided between the operation plate 110 and the operation plate support receiving portion 132, two for each operation plate support receiving portion 132.
  • the elastic body 133 is, for example, rubber, sponge, spring or the like, and tries to keep the operation plate 110 parallel to the bottom plate 160.
  • FIG. 4 is a side view cutaway view showing an example of the structure of the touch panel 800 in this embodiment.
  • a gap is formed between the operation plate 110 and the operation screen display device 140 so that the pressure applied by the user to the operation plate 110 is not transmitted to the operation screen display device 140.
  • the operation plate 110 rotates around the axis of the operation plate support 131.
  • the pressure is transmitted to the pressure sensor 150 on the side to which the pressure is applied via the detection position support unit 120, and the pressure sensor 150 detects the pressure.
  • the operation plate 110 returns to a state parallel to the bottom plate 160 by the elastic force of the elastic body 133, and the pressure sensor 150 does not detect the pressure.
  • the decorative plate 820 there is a gap between the outer edge 112 and the pressure is not transmitted, and the pressure sensor 150 does not detect the pressure.
  • the operation plate support 131, the operation plate support receiving portion 132, and the elastic body 133 are not configured to hold the operation plate 110 in a rotatable manner, but are configured to fix the operation plate 110 and the bottom plate 160 with a column or the like. It is good. In such a configuration, when the user applies pressure to the operation plate 110, the operation plate 110 is elastically deformed, and the pressure is transmitted to the pressure sensor 150 via the detection position support unit 120.
  • a configuration without the decorative board 820 may be employed.
  • the thickness of the central portion 111 of the operation plate 110 and the thickness of the outer edge portion 112 are the same, the surface becomes flat. Further, by painting the back side of the outer edge portion 112, the inside of the touch panel 800 can be hidden. As a result, it is possible to realize an excellent aesthetic design with a transparent surface.
  • FIG. 5 is a diagram illustrating an example of a hardware configuration of the pressed position determination device 200 in this embodiment.
  • the touch panel 800 further includes a pressed position determination device 200.
  • the pressurization position determination device 200 determines where the pressure is applied in the operation region based on the pressure detected by the pressure sensor 150.
  • the pressure position determination device 200 includes a processing device (hereinafter referred to as “CPU 911”), a nonvolatile memory (hereinafter referred to as “ROM 913”), a volatile memory (hereinafter referred to as “RAM 914”), a communication device 915, and the like.
  • An analog-digital converter hereinafter referred to as “ADC916” is included.
  • the CPU 911 executes the program stored in the ROM 913 to control the entire pressurization position determination device 200 and process the data stored in the ROM 913 and the RAM 914 to realize the functional blocks described below.
  • the ROM 913 is a non-volatile storage device and stores programs, data, and the like.
  • the RAM 914 is a volatile storage device and stores data and the like.
  • a communication device 915 (transmission device / reception device) communicates with an information processing device such as a computer.
  • the communication device 915 transmits data to the information processing device according to an instruction from the CPU 911, and receives data transmitted from the information processing device to the pressure position determination device 200.
  • the ADC 916 receives the signal output from the pressure sensor 150 and converts it into digital data that can be processed by the CPU 911.
  • FIG. 6 is a block configuration diagram showing an example of a functional block configuration of the pressurized position determination device 200 in this embodiment.
  • the pressure position determination apparatus 200 includes a button input unit 211, a button storage unit 212, a pressure input unit 221, a pressure storage unit 222, a maximum determination unit 231, a threshold determination unit 234, a position determination unit 235, and a position output unit 236.
  • these functional blocks are realized by the CPU 911 executing a program. Note that some or all of these functional blocks may not be realized by a program, but may be realized by an analog circuit, a digital circuit, an integrated circuit, or the like.
  • the button input unit 211 uses the communication device 915 to receive button position data transmitted by the information processing device.
  • the button position data is data representing where the user can press a button on the operation screen 810 displayed by the operation screen display device 140.
  • the button input unit 211 uses the CPU 911 to output the received button position data.
  • the button storage unit 212 uses the CPU 911 to input the button position data output from the button input unit 211.
  • the button storage unit 212 uses the RAM 914 to store the input button position data.
  • FIG. 7 is a diagram showing an example of the relationship between the button display position 311 and the detection position 350 in this embodiment.
  • the button display position 311 (pressed position) is a standard position where the button 811 can be displayed on the operation screen 810.
  • the button 811 may be displayed at the button display position 311 or may not be displayed. Further, the shape, size, color, and the like of the button 811 displayed at the button display position 311 may be arbitrary.
  • the detection position 350 is a position where the pressure sensor 150 detects the pressure applied to the operation plate 110, and the connection position between the detection position support unit 120 and the operation plate 110 is the detection position 350.
  • the operation screen 810 has six button display positions 311a to 311f.
  • the operation screen 810 is divided into upper and lower parts around the axis 331 of the operation plate support 131, and there are three button display positions 311a to 311c and 311d to 311f in each of the divided upper and lower parts.
  • Three button display positions 311a to 311c and 311d to 311f are arranged side by side.
  • the six detection positions 350a to 350f corresponding to the six pressure sensors 150a to 150f are close to the six button display positions 311a to 311f, respectively, and are all outside the operation screen 810.
  • the button position data input by the button input unit 211 represents the position where the button 811 is displayed and the position where the button 811 is not displayed among the six button display positions 311a to 311f.
  • the pressure input unit 221 uses the ADC 916 to input signals output from the pressure sensors 150a to 150f and convert them into digital data (hereinafter referred to as “detected pressure data”). Using the CPU 911, the pressure input unit 221 outputs the converted detected pressure data.
  • the pressure storage unit 222 uses the CPU 911 to input the detected pressure data output from the pressure input unit 221.
  • the pressure storage unit 222 uses the RAM 914 to store the input detected pressure data.
  • the maximum determination unit 231 uses the CPU 911 to input the detected pressure data stored in the pressure storage unit 222.
  • the maximum determination unit 231 uses the CPU 911 to detect the pressure sensor 150 that detects the highest pressure (hereinafter referred to as “maximum pressure detection sensor”) based on the input detected pressure data, and the pressure sensor 150 detects the detected pressure.
  • the pressure (hereinafter referred to as “detected maximum pressure”) is determined.
  • the maximum determination unit 231 outputs data representing the determined determination result.
  • the threshold determination unit 234 uses the CPU 911 to input the data output from the maximum determination unit 231.
  • the threshold determination unit 234 uses the CPU 911 to compare the detected maximum pressure with a predetermined threshold based on the determination result represented by the input data. When the user presses the button 811, the detected maximum pressure becomes larger than the threshold value.
  • the threshold determination unit 234 uses the CPU 911 to output data representing the compared result of comparison.
  • the position determination unit 235 uses the CPU 911 to determine whether or not the button 811 is displayed at the button display position corresponding to the maximum pressure detection sensor that has detected a pressure greater than the threshold. This is because the case where the user presses the position where the button 811 is not displayed is ignored.
  • the position determination unit 235 uses the CPU 911 to generate and output data representing the button display position corresponding to the maximum pressure sensor.
  • the position output unit 236 uses the CPU 911 to input the data output from the position determination unit 235.
  • the position output unit 236 uses the communication device 915 to transmit the input data to the information processing device.
  • the operation panel 110 tilts upward about the axis 331, and the pressure sensors 150a corresponding to the upper three pressure detection positions 350a to 350c. ⁇ 150c detects the pressure.
  • the pressure sensor 150a corresponding to the detection position 350a closest to the button display position 311a detects the strongest pressure.
  • the pressurization position determination device 200 determines that the button 811 displayed at the button display position 311a corresponding to the pressure sensor 150a that has detected the strongest pressure has been pressed based on the pressure detected by the pressure sensors 150a to 150f.
  • FIG. 8 is a flowchart showing an example of the flow of the pressed position determination process S610 in this embodiment.
  • the pressurization position determination apparatus 200 determines a position where pressure is applied in the operation region.
  • the pressurization position determination process S610 includes a button position input step S611, a pressure input step S612, a maximum determination step S613, a threshold determination step S615, a position determination step S617, and a position output step S619.
  • the button input unit 211 receives button position data using the communication device 915.
  • the button storage unit 212 stores the button position data received by the button input unit 211 using the RAM 914.
  • the pressure input unit 221 inputs the pressure detected by the pressure sensors 150a to 150f using the ADC 916.
  • the pressure storage unit 222 uses the RAM 914 to store detected pressure data representing the pressure input by the pressure input unit 221.
  • the maximum determination unit 231 uses the CPU 911 to determine the maximum pressure detection sensor and the detected maximum pressure based on the detected pressure data stored in the pressure storage unit 222 in the pressure input step S612.
  • the threshold determination unit 234 uses the CPU 911 to compare the detected maximum pressure determined by the maximum determination unit 231 in the maximum determination step S613 with a predetermined threshold.
  • the button 811 is not pressed, the detected maximum pressure is not more than the threshold value.
  • the pressurization position determination device 200 returns to the pressure input step S612.
  • the button 811 is pressed, the detected maximum pressure becomes larger than the threshold value.
  • the pressed position determination device 200 proceeds to the position determination step S617.
  • the position determination unit 235 uses the CPU 911 to determine the maximum determined by the maximum determination unit 231 in the maximum determination step S613 based on the button position data stored in the button storage unit 212 in the button position input step S611. It is determined whether or not the button 811 is displayed at the button display position corresponding to the pressure detection sensor. When the button 811 is not displayed at the position where the pressure is applied, the pressurization position determination device 200 returns to the pressure input step S612. When the button 811 is displayed at the position where pressure is applied, the pressed position determination device 200 proceeds to the position output step S619.
  • the position determination unit 235 uses the CPU 911 to generate data representing the button display position corresponding to the maximum pressure detection sensor determined by the maximum determination unit 231 in the maximum determination step S613.
  • the position output unit 236 uses the communication device 915 to transmit the data generated by the position determination unit 235.
  • the position input device determines a pressure position where pressure is applied when pressure is applied to an arbitrary position in the operation area.
  • the position input device includes an operation plate 110, at least two pressure detection devices (pressure sensors 150), and a pressure position determination device 200.
  • the operation plate 110 has a flat plate shape and has the operation region on one surface.
  • the pressure detection device detects a detection position pressure generated by a pressure applied to the pressurization position at a pressure detection position 350 different from other pressure detection devices.
  • the pressure detection position 350 is located outside the operation area on the operation plate 110.
  • the pressure position determination device 200 determines the pressure position based on at least two detected position pressures detected by at least two pressure detection devices.
  • the position input device touch panel 800 in this embodiment, since the pressure detection position is located outside the operation region, there is no need to arrange a pressure detection device for detecting pressure in the operation region. For this reason, even when the operation screen display device 140 that displays the operation screen is arranged below the operation area, the brightness of the operation screen does not decrease and the operation screen can be easily viewed. In addition, even if the operation area becomes large, it is not necessary to change the configuration of the pressure detection device, so that the manufacturing cost of the position input device can be suppressed.
  • the pressure position determination device 200 is a pressure detection device (maximum) that detects the largest detection position pressure among the at least two pressure detection devices (pressure sensor 150). Pressure detection sensor), and the pressurization position is determined to be a position closest to the pressure detection position 350 of the determined pressure detection device (maximum pressure detection sensor) among the at least two pressure detection positions 350. .
  • the position closest to the pressure detection position of the pressure detection device that has detected the largest pressure among the plurality of pressure detection devices is defined as the pressurization position. Since the determination is made, if the arrangement of the buttons 811 is determined in advance, it is possible to determine which button 811 is pressed with a simple configuration.
  • a bulge or a depression may be provided on the upper surface of the operation plate 110 corresponding to the button display position.
  • the user can recognize the position of the button 811 not only by viewing the operation screen 810 with his / her eyes but also by touching the bulge or the depression with a finger. Fusion of vision and touch makes it easier for the user to recognize the position of the button 811.
  • the position input device (touch panel 800) in this embodiment further includes detection position support portions 120a to 120f.
  • the detection position support portions 120a to 120f support the operation plate 110 at the pressure detection positions 350a to 350f.
  • the pressure detection devices pressure sensors 150a to 150f detect detection position pressures at the pressure detection positions 350a to 350f via the detection position support portions 120a to 120f.
  • the detection position support unit 120 supports the operation plate 110, a space for placing the operation screen display device 140 under the operation plate 110 can be secured.
  • the pressure detection device can detect the pressure generated at the pressure detection positions 350a to 350f via the detection position support portions 120a to 120f.
  • the position input device (touch panel 800) in this embodiment further includes an operation plate support 131.
  • the operation plate support 131 supports the operation plate 110 at a position different from the pressure detection positions 350a to 350f.
  • the operation plate support unit 131 supports the operation plate 110 at a position different from the pressure detection positions 350a to 350f.
  • the transmission of force from the position to the pressure detection position can be controlled.
  • a rod-like member (column) shorter than the detection position support unit 120 may be provided between the adjacent detection position support units 120 as the operation plate support unit.
  • the pressure detection device may be arranged in the middle of the detection position support portions 120a to 120f instead of the pressure detection device being arranged under the detection position support portions 120a to 120f.
  • the pressure detection device is configured in an annular shape, the detection position support portion is divided into two, and the lower detection position support portion is fixed to the bottom plate 160.
  • a male screw is provided at the upper end of the lower detection position support portion, and a female screw is provided at the lower end of the upper detection position support portion.
  • the tip of the male screw is passed through the ring of the pressure detection device, and the two screws are screwed together.
  • the position input device (touch panel 800) in this embodiment further includes an out-of-region protection unit (decorative plate 820).
  • the out-of-region protection unit is located on the side of the surface having the operation region with respect to the operation plate 110, and the operation plate 110 is configured to prevent pressure from being applied to portions other than the operation region of the operation plate 110. The part other than the operation area is covered.
  • the out-of-area protection unit covers a portion other than the operation area of the operation plate 110, and thus the operation area of the operation plate 110 It is possible to prevent erroneous determination that the button 811 is pressed when the user presses outside the operation area without applying pressure to the other portions.
  • the position input device (touch panel 800) in this embodiment further includes an operation screen display device 140.
  • the operation plate 110 is transparent.
  • the operation screen display device 140 is positioned on the opposite side of the surface having the operation region with respect to the operation plate 110 and displays an operation screen 810 that can be viewed through the operation region of the operation plate 110.
  • the position input device touch panel 800 in this embodiment, since the pressure detection position is located outside the operation region, there is no need to arrange a pressure sensor for detecting pressure in the operation region, and the operation screen 810 Since the luminance does not decrease, the operation screen 810 can be easily viewed.
  • the position input device includes a display screen (display unit 141), a pressure sensor (pressure sensor 150), a transparent plate (operation plate 110), and an analog voltage detection circuit (AD converter, comparator, etc.) ( ADC916), a transparent plate is arranged on the display surface side of the display screen, a pressure sensitive sensor is arranged around the display screen, and pressure is applied to the pressure sensitive sensor by pressing the transparent plate on the display screen. The pressed position is detected by reading the pressure value with an analog voltage detection circuit.
  • the position input device (display operation device) described above arranges pressure sensitive sensors at n positions near the pressed position (button display position 311) on the liquid crystal screen, and detects n pressed positions near the sensor position.
  • the position input device (display operation device) described above may have a configuration in which a support (operation plate support) is provided between the pressure sensors and the transparent plate is supported by the support.
  • the decorative plate 820 is disposed on the transparent plate, the decorative plate 820 is supported independently of the transparent plate, and the pressing force is applied to the transparent plate when the decorative plate 820 is pressed. You may comprise so that it may not apply.
  • the position input device (display operation device) described above may have a configuration in which a convex portion is provided at the pressing position of the transparent plate.
  • the position input device (display operation device) described above may have a configuration in which a recess is provided at the pressing position of the transparent plate.
  • the position input device (display operation device) described above may be configured to change control according to a plurality of pressing forces detected by the pressure sensor.
  • Embodiment 2 FIG. The second embodiment will be described with reference to FIG. In addition, about the part which is common in Embodiment 1, the same code
  • FIG. 9 is an exploded perspective view showing an example of the structure of the main body 100 in this embodiment.
  • the main body 100 includes an operation screen display device 140 and a bottom plate 160, and does not include the operation plate 110.
  • the elastic body 133 tries to keep the display unit 141 of the operation screen display device 140 in parallel with the bottom plate 160.
  • the pressure sensors 150a to 150f are in direct contact with the back side of the operation screen display device 140, and detect pressure generated when the user presses the display unit 141 of the operation screen display device 140.
  • the operation panel 110 is not provided, and instead, the display unit 141 of the operation screen display device 140 is used as the operation area.
  • the display unit 141 of the operation screen display device 140 is used as the operation area.
  • the pressure sensors 150a to 150f detect the pressure.
  • the display unit 141 of the operation screen display device 140 may be used as an operation panel, and the user may directly touch the display unit 141 and press the button 811.
  • the operation panel displays the operation screen 810 in the operation area.
  • the position input device touch panel 800 in this embodiment, since the operation panel (operation screen display device 140) displays the operation screen 810 in the operation area, the number of parts of the touch panel 800 can be reduced, and position input is possible. The manufacturing cost of the apparatus can be suppressed.
  • pressure sensors are arranged at the four corner positions on the back surface of the display screen (operation screen display device 140) held by the elastic body 133.
  • a configuration may be adopted in which the liquid crystal (operation screen display device 140) is fixed at the position where the sensor is disposed and the pressing pressure is detected and the pressing position is estimated by pressing the display screen (display unit 141).
  • pressure sensors are arranged at positions on the four sides of the back surface of the display screen (operation screen display device 140) held by the elastic body 133.
  • a configuration may be adopted in which the liquid crystal (operation screen display device 140) is fixed at the position where the sensor is disposed and the pressing pressure is detected and the pressing position is estimated by pressing the display screen (display unit 141).
  • the pressure-sensitive sensor (pressure sensor 150) has a ring shape (including not only a circular ring but also a square ring), and a column for fixing the liquid crystal.
  • a pressure-sensitive sensor may be arranged in this portion, and the liquid crystal may be fixed by passing a fixing bracket (screw) through a hollow portion in the center of the annular sensor.
  • Embodiment 3 FIG. A third embodiment will be described with reference to FIGS.
  • symbol is attached
  • FIG. 10 is a partially enlarged side view cutaway view showing an example of a configuration for fixing the pressure sensor 150 to the bottom plate 160 in this embodiment.
  • the bottom plate 160 has a screw hole penetrating just below the fixing position of the pressure sensor 150.
  • the pressure sensor 150 is temporarily fixed to the bottom plate 160 with a soft material such as rubber 172, and the mounting height can be adjusted by an adjustment screw 171 penetrating from the back side of the bottom plate 160 through a screw hole.
  • the adjustment screw 171 (detected pressure adjusting device) is adjusted to increase the mounting height of the pressure sensor 150, the pressure detected by the pressure sensor 150 increases. Conversely, when the adjustment screw 171 is adjusted to lower the mounting height of the pressure sensor 150, the pressure detected by the pressure sensor 150 decreases.
  • the pressure detected by the pressure sensor 150 may differ due to a slight difference in the length of the detection position support unit 120, an installation angle of the touch panel 800, a difference in sensitivity of the pressure sensor 150, and the like. By adjusting the adjustment screw 171 so that they are equal, false detection is reduced.
  • FIG. 11 is a block configuration diagram showing an example of a functional block configuration of the pressed position determination device 200 in this embodiment.
  • the pressure position determination apparatus 200 includes a mode input unit 241, a screen generation unit 242, and a screen output unit 243 in addition to the configuration described in the first embodiment.
  • the mode input unit 241 inputs the mode of the touch panel 800 using the CPU 911.
  • the touch panel 800 has a “operation mode” for inputting a user operation and an “adjustment mode” for adjusting the pressure sensor 150.
  • the mode input unit 241 inputs the mode by receiving data representing the mode from the information processing device using the communication device 915.
  • the mode input unit 241 inputs the mode by reading the state of a mechanical changeover switch such as a tact switch provided on the touch panel 800.
  • the mode input unit 241 uses the CPU 911 to output data representing the input mode.
  • the screen generation unit 242 uses the CPU 911 to input the data output from the mode input unit 241. Based on the input data, screen generation unit 242 generates an adjustment screen displayed by operation screen display device 140 when the mode of touch panel 800 is the adjustment mode. Using the CPU 911, the screen generation unit 242 outputs data representing the generated adjustment screen. Using the CPU 911, the screen output unit 243 inputs the data output by the screen generation unit 242. Using the CPU 911, the screen output unit 243 generates a signal representing the operation screen represented by the input data and outputs the signal to the operation screen display device 140. When the touch panel 800 is in the operation mode, the operation screen display device 140 displays the operation screen 810 based on a signal received from the information processing device. When the mode of the touch panel 800 is the adjustment mode, the signal output from the screen output unit 243 is input and the adjustment screen is displayed.
  • FIG. 12 is a diagram showing an example of the adjustment screen 815 generated by the screen generation unit 242 in this embodiment.
  • the button display positions 311a to 311f include buttons 811a to 811f.
  • the value of the pressure detected by the corresponding pressure sensor 150 is displayed in the buttons 811a to 811f. Further, when any one of the buttons 811a to 811f is pressed, when the pressing position determination device 200 determines, the color, shape, and size of the button 811 so that the button 811 determined to be pressed can be recognized. Etc.
  • FIG. 13 is a flowchart showing an example of the flow of sensor adjustment processing S620 in this embodiment.
  • the sensor adjustment process S620 is executed when the mode input by the mode input unit 241 is the adjustment mode.
  • the pressurization position determination device 200 displays the adjustment screen 815 in the operation screen display device 140 to help the administrator adjust the pressure sensor 150.
  • the sensor adjustment process S620 includes a screen generation process S623, a pressure input process S624, a maximum determination process S625, and a threshold determination process S626.
  • the screen generation unit 242 uses the CPU 911 to generate the adjustment screen 815 based on the detection pressure data stored in the pressure storage unit 222 and the determination result represented by the data output from the position determination unit 235. .
  • the operation screen display device 140 displays the adjustment screen 815 generated by the screen generation unit 242.
  • the pressure input unit 221 inputs the pressure detected by the pressure sensors 150a to 150f using the ADC 916.
  • the pressure storage unit 222 uses the RAM 914 to store detected pressure data representing the pressure input by the pressure input unit 221.
  • the maximum determination unit 231 uses the CPU 911 to determine the maximum pressure detection sensor and the detected maximum pressure based on the detected pressure data stored in the pressure storage unit 222 in the pressure input step S624.
  • the threshold determination unit 234 uses the CPU 911 to compare the detected maximum pressure determined by the maximum determination unit 231 in the maximum determination step S625 with a predetermined threshold, and the detected maximum pressure is greater than the threshold. It is determined whether or not. Thereafter, the process returns to the screen generation step S623.
  • the administrator sets the touch panel 800 to the adjustment mode and displays the adjustment screen 815.
  • the administrator adjusts the adjustment screw 171 so that the pressure detected by the pressure sensor 150 becomes an appropriate value while looking at the adjustment screen 815.
  • the administrator adjusts the adjustment screw 171 so that the pressure detected by the pressure sensor 150 is the same while the operation plate 110 is not pressed.
  • the administrator checks the button 811 and confirms whether the pressed position determination device 200 determines that the button 811 is pressed when the button 811 is pressed with a predetermined strength.
  • the administrator presses the button 811 for confirmation the administrator may press the button 811 with a finger.
  • the administrator places the button 811 on the button 811 (operation panel 110) by placing a weight on the button 811, for example. It is desirable to keep the pressing pressure constant.
  • the position input device (touch panel 800) in this embodiment further includes a detection pressure adjustment device (adjustment screw 171).
  • the detected pressure adjusting device can adjust the detected position pressure detected by the pressure detecting device (pressure sensor 150).
  • the pressure detected by the pressure sensor 150 can be adjusted by the detected pressure adjusting device (adjustment screw 171). By adjusting to an appropriate value, erroneous determination can be prevented.
  • the adjustment screw (adjustment screw 171) for changing the initial pressure applied to the pressure sensor (pressure sensor 150) is disposed at the position of each pressure sensor on the back surface. To do.
  • Embodiment 4 FIG. The fourth embodiment will be described with reference to FIGS. Note that portions common to Embodiments 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.
  • the pressure detected by the pressure detection device pressure sensor 150
  • the detection pressure adjustment device adjustment screw 171
  • adjustment is performed by software by adding a correction value to the detected pressure data input by the pressure input unit 221.
  • FIG. 14 is a block configuration diagram showing an example of a functional block configuration of the pressurized position determination device 200 in this embodiment.
  • the pressed position determination device 200 further includes a correction calculation unit 251, a correction storage unit 252, and a pressure correction unit 253.
  • the correction calculation unit 251 uses the CPU 911 to calculate a pressure correction value based on the detected pressure data stored in the pressure storage unit 222.
  • the pressure correction value is a correction value that is added to the pressure detected by the pressure sensor 150.
  • the correction calculation unit 251 calculates a pressure correction value for each of the pressure sensors 150a to 150f.
  • the correction calculation unit 251 outputs data representing the calculated pressure correction value (hereinafter referred to as “correction value data”).
  • the correction storage unit 252 inputs the correction value data output from the correction calculation unit 251 using the CPU 911.
  • the correction storage unit 252 stores input correction value data using the ROM 913.
  • the correction storage unit 252 stores the correction value data in the nonvolatile memory, so that the correction value data is retained even when the touch panel 800 is turned off and turned on again.
  • the pressure correction unit 253 uses the CPU 911 to input the detected pressure data output from the pressure input unit 221 and the correction value data stored in the correction storage unit 252. Using the CPU 911, the pressure correction unit 253 calculates the sum of the pressure represented by the input detected pressure data and the correction value represented by the correction value data. Using the CPU 911, the pressure correction unit 253 outputs data representing the calculated sum (hereinafter referred to as “corrected pressure data”).
  • the pressure storage unit 222 uses the CPU 911 to input the corrected pressure data output from the pressure correction unit 253 instead of the detected pressure data output from the pressure input unit 221, and uses the RAM 914 to input the input corrected pressure data. And stored as detected pressure data.
  • the pressure storage unit 222 stores the pressure detected by the pressure sensor 150 plus the correction value, thereby having the same effect as adjusting the pressure detected by the pressure sensor 150 in hardware. Can be obtained.
  • the detection pressure adjustment device adjustment screw 171
  • the structure of the touch panel 800 is simplified and the number of components can be reduced, so that the manufacturing cost of the touch panel 800 can be suppressed.
  • FIG. 15 is a diagram illustrating an example of the adjustment screen 815 generated by the screen generation unit 242 according to this embodiment.
  • the screen generation unit 242 selects button display positions one by one, and generates an adjustment screen 815 that displays buttons 811 at the selected button display positions.
  • the adjustment screen 815 has a countdown display 816 that counts down as time passes. If the button 811 is pressed when the countdown display 816 becomes “0”, the correction calculation unit 251 calculates the correction value of the pressure sensor 150 corresponding to the button display position.
  • the adjustment screen 815 may be configured such that the countdown display 816 is not displayed.
  • FIG. 16 is a flowchart showing an example of the flow of sensor adjustment processing S620 in this embodiment.
  • the sensor adjustment processing S620 includes a position selection step S621, a countdown setting step S622, a countdown determination step S627, a pressurization determination step S628, a correction calculation step S629, and an end determination step S630. .
  • the correction calculation unit 251 uses the CPU 911 to sequentially select the pressure sensors 150 one by one from the six pressure sensors 150a to 150f. In the countdown setting step S622, the correction calculation unit 251 uses the CPU 911 to set the remaining time until correction to a predetermined time (for example, 5 seconds).
  • the screen generation unit 242 uses the CPU 911 to display the button 811 at the button display position corresponding to the pressure sensor 150 selected by the correction calculation unit 251 in the position selection step S621, and in the countdown setting step S622.
  • An adjustment screen 815 in which the set remaining time is displayed on the countdown display 816 is generated.
  • the operation screen display device 140 displays the adjustment screen 815 generated by the screen generation unit 242.
  • the correction calculation unit 251 uses the CPU 911 to determine whether or not the remaining time until correction has become zero. If the remaining time is greater than 0, the process returns to the screen generation step S623. When the remaining time is 0 or less, the process proceeds to the pressurization determination step S628.
  • the correction calculation unit 251 uses the CPU 911 to compare the pressure detected by the pressure sensor 150 selected in the position selection step S621 with a predetermined second threshold value.
  • the second threshold is a value smaller than the threshold used by the threshold determination unit 234 to determine whether or not the button has been pressed in the threshold determination steps S615 and S626. This is because the pressure detected by the pressure sensor 150 is small and the value before correction may be smaller than the threshold value of the threshold value determination unit 234. If the pressure detected by the pressure sensor 150 is greater than the second threshold, it is determined that there is pressurization, and the process proceeds to the correction calculation step S629. When the pressure detected by the pressure sensor 150 is equal to or less than the second threshold, it is determined that no pressure is applied, and the process proceeds to the end determination step S630.
  • the correction calculation unit 251 uses the CPU 911 to calculate a difference obtained by subtracting the pressure detected by the pressure sensor 150 selected in the position selection step S621 from a predetermined reference pressure. Pressure correction value.
  • the correction storage unit 252 stores the pressure correction value calculated by the correction calculation unit 251 using the ROM 913. Thereafter, the correction calculation unit 251 returns to the position selection step S621 and selects the next pressure sensor 150. When the last pressure sensor 150 is selected, the correction calculation unit 251 returns to the first pressure sensor 150 and selects it.
  • the correction calculation unit 251 uses the CPU 911 to determine whether or not to end the sensor adjustment process S620. For example, the correction calculation unit 251 determines to end the sensor adjustment processing S620 when it is determined that no pressure is applied in the past six pressure determination steps S628. If it is determined not to end the sensor adjustment process S620, the process returns to the position selection step S621, and the next pressure sensor 150 is selected.
  • the position input device (touch panel 800) in this embodiment further includes a detection pressure correction device (pressure correction unit 253).
  • the detected pressure correcting device corrects the detected position pressure detected by the pressure detecting device (pressure sensor 150).
  • the pressurization position determination device 200 determines the pressurization position based on the detected position pressure corrected by the detected pressure correction device.
  • the pressurization position determination device 200 determines the pressurization position based on the detected position pressure corrected by the detection pressure correction device (pressure correction unit 253). Incorrect determination can be prevented by appropriately correcting the pressure detected by the pressure sensor 150.
  • the correction calculation unit 251 does not calculate a correction value based on the pressure input by the pressure input unit 221, but mechanically inputs pressure correction timing to the touch panel 800.
  • a correction switch may be provided, and the correction calculation unit 251 may calculate a correction value based on the pressure input by the pressure input unit 221 when the correction switch is pressed. In that case, the administrator presses the correction switch while pressing the button 811 displayed on the adjustment screen 815.
  • the correction calculation is performed based on the pressure input by the pressure input unit 221.
  • the unit 251 may calculate the correction value.
  • the position input device (display operation device) described above has a pressure-sensitive setting mode (adjustment mode) and is set by a switch (changeover switch) other than the switch detected by the pressure-sensitive sensor (pressure sensor 150). It is good also as a structure which memorize
  • the position input device (display operating device) described above has a pressure-sensitive setting mode, and switches to the setting mode by a switch other than the switch detected by the pressure-sensitive sensor, and the position displayed on the display screen is displayed. It is good also as a structure which memorize
  • the position input device (display operation device) described above has a pressure-sensitive setting mode, and the switch (button) is instructed to be pressed after shifting to the setting mode by a switch other than the switch detected by the pressure-sensitive sensor.
  • 811) may be displayed on the display screen, and a display intended for information necessary for setting (during setting or setting completion) (second count display 816) may be output to the liquid crystal display area other than the pressed portion.
  • Embodiment 5 FIG. The fifth embodiment will be described with reference to FIGS. 17 to 21.
  • FIG. In addition, about the part which is common in Embodiment 1 thru
  • FIG. 17 is an exploded perspective view showing an example of the structure of the main body 100 in this embodiment.
  • the main body 100 includes four detection position support portions 120a to 120d and four pressure sensors 150a to 150d.
  • the detection position support portions 120a to 120d are provided at the four corners of the outer edge portion 112, respectively.
  • the pressure sensors 150a to 150d are provided at positions where they abut against the detection position support portions 120a to 120d, and detect the detection position pressure generated by the pressure applied to the operation plate 110 via the detection position support portions 120a to 120d. To detect.
  • the position where the detection position support portions 120a to 120d are in contact with the operation plate 110 is the pressure detection position, and the operation region is included in a rectangle formed by the four pressure detection positions.
  • the force is distributed to the four detection position support portions 120a to 120d and transmitted to the pressure sensor 150.
  • FIG. 18 is a block configuration diagram showing an example of a functional block configuration of the pressurized position determination device 200 in this embodiment.
  • the pressure position determination apparatus 200 includes a pressure input unit 221, a pressure storage unit 222, a total calculation unit 232, a ratio calculation unit 233, a threshold determination unit 234, a position determination unit 235, and a position output unit 236.
  • the total calculation unit 232 uses the CPU 911 to input the detected pressure data stored in the pressure storage unit 222.
  • the total calculation unit 232 uses the CPU 911 to calculate the total pressure detected by the four pressure sensors 150a to 150d based on the input detected pressure data. Using the CPU 911, the total calculation unit 232 outputs data representing the calculated total.
  • the ratio calculation unit 233 uses the CPU 911 to input the detected pressure data stored in the pressure storage unit 222 and the data output from the total calculation unit 232.
  • the ratio calculation unit 233 uses the CPU 911 to calculate a quotient obtained by dividing the pressure detected by each of the four pressure sensors 150a to 150d by the total of the four pressures based on the input data.
  • the ratio calculation unit 233 outputs data representing the calculated quotient (hereinafter referred to as “pressure dispersion ratio”).
  • the threshold determination unit 234 uses the CPU 911 to input the data output from the total calculation unit 232.
  • the threshold determination unit 234 uses the CPU 911 to compare the total of the four pressures with a predetermined threshold based on the input data. Since the total pressure detected by the four pressure sensors 150 is proportional to the pressure applied to the operation panel 110, when the user presses the button 811, the total of the four pressures is greater than the threshold value.
  • the threshold determination unit 234 uses the CPU 911 to output data representing the compared result of comparison.
  • the position determination unit 235 uses the CPU 911 to input the data output from the threshold determination unit 234 and the data output from the ratio calculation unit 233.
  • the position determination unit 235 calculates the pressurization position from the pressure dispersion ratio calculated by the ratio calculation unit 233 when the sum of the four pressures is larger than the threshold based on the input data.
  • the position determination unit 235 outputs data representing the calculated pressure position.
  • FIG. 19 is a flowchart showing an example of the flow of the pressed position determination process S610 in this embodiment.
  • the pressurization position determination process S610 includes a pressure input process S612, a total calculation process S614, a threshold determination process S615, a ratio calculation process S616, a position determination process S618, and a position output process S619.
  • the total calculation unit 232 uses the CPU 911 to calculate the total pressure based on the detected pressure data stored in the pressure storage unit 222 in the pressure input step S612.
  • the threshold determination unit 234 uses the CPU 911 to compare the total pressure calculated in the total calculation step S614 with a predetermined threshold. When the button 811 is not pressed, the total pressure is equal to or less than the threshold value. The pressurization position determination device 200 returns to the pressure input step S612. When the button 811 is pressed, the total pressure becomes larger than the threshold value. The pressed position determination apparatus 200 proceeds to the ratio calculation step S616.
  • the ratio calculation unit 233 uses the CPU 911 to sum the detected pressure data stored in the two pressure storage unit 222 in the pressure input step S612 and the pressure calculated by the threshold determination unit 234 in the total calculation step S614. Based on the above, the pressure dispersion ratio is calculated.
  • the position determination unit 235 uses the CPU 911 to calculate the pressure position based on the pressure distribution ratio calculated in the ratio calculation step S616.
  • FIG. 20 is a diagram illustrating a balance of forces when there are two pressure detection positions.
  • P 1 and P 2 indicate pressure detection positions.
  • the coordinates (x 1, y 1) the pressure detection position P 1 and the pressure detection position P 2 of the coordinates (x 2, y 2) are known.
  • P indicates a pressure position.
  • F indicates the force applied to the pressure position P.
  • F 1 indicates the stress generated at the pressure detection position P 1 .
  • F 2 indicates the stress generated at the pressure detection position P 2 .
  • l 1 indicates the distance between the pressure position P and the pressure detection position P 1 .
  • l 2 indicates the distance between the pressure position P and the pressure detection position P 2 .
  • the coordinates (x, y) of the pressurizing position P can be obtained by the following equation.
  • FIG. 21 is a diagram showing the balance of forces when there are three pressure detection positions.
  • P 3 represents a third pressure detection positions.
  • the coordinates (x 3 , y 3 ) of the pressure detection position P 3 are known.
  • Pressed position P of coordinates (x, y), except that which is located within the triangle whose vertices three pressure detection positions P 1 and P 2 and P 3, is unknown.
  • P ′ indicates an intersection of a straight line passing through the pressure position P and the pressure detection position P 1 and a line segment connecting the two pressure detection positions P 2 and P 3 .
  • the coordinates (x ′, y ′) of the intersection point P ′ are unknown.
  • F 3 indicates the stress generated at the pressure detection position P 3 .
  • F ′ shows the composition of the two stresses F 2 and F 3 .
  • l ′ represents the distance between the pressing position P and the intersection P ′.
  • l 2 indicates the distance between the pressure detection position P 2 and the intersection P ′.
  • l 3 indicates the distance between the pressure detection position P 3 and the intersection P ′.
  • the coordinates (x, y) of the pressurizing position P can be obtained by the following equation.
  • the coordinates of the i-th (1 ⁇ i ⁇ n) pressure detection position P i are (x i , y i ), and the stress generated at the pressure detection position P i is F i. Then, the coordinates (x, y) of the pressing position P can be obtained by the following formula.
  • the position determination unit 235 calculates the pressure position by calculating this calculation formula. For example, the position determination unit 235 uses the ROM 913 to store the coordinates (x i , y i ) of each pressure detection position in advance. The position determination unit 235 uses the CPU 911 to correspond the pressure dispersion ratio (corresponding to “F i / F” in the above equation) calculated by the ratio calculation unit 233 for each pressure sensor 150 to each pressure sensor 150. The product of multiplying the x coordinate of the pressure detection position to be calculated is calculated, and the x coordinate of the pressurizing position is calculated by calculating the sum total of the calculated products.
  • the position determination unit 235 uses the CPU 911 to calculate a product in which the ratio calculation unit 233 multiplies the pressure distribution ratio for each pressure sensor 150 by the y coordinate of the pressure detection position corresponding to each pressure sensor 150. Then, the y coordinate of the pressing position is calculated by calculating the sum total of the calculated products.
  • the operation area is a plane
  • there are three or more pressure detection positions and the operation area is included in a polygon whose apex is the pressure detection position.
  • Such an arrangement may be used.
  • the operation area is usually rectangular, it is efficient and desirable to have a configuration with four pressure detection positions.
  • the position input device in this embodiment has at least three pressure detection devices (pressure sensors 150).
  • the pressure detection position of the pressure detection device forms a polygon surrounding at least a part of the operation region.
  • the pressure position determination device 200 determines the pressure position based on a ratio (pressure dispersion ratio) of at least three detected position pressures detected by at least three pressure detection devices.
  • the position of the button 811 does not need to be determined in advance, and the pressure position can be determined by a small number of pressure detection devices. The manufacturing cost can be reduced.
  • the position input device (display operation device) described above is a triangle connecting three places with three pressure-sensitive sensors (pressure sensors 150) arranged at the center of the side opposite to both ends of one side of the transparent plate (operation plate 110).
  • the display screen (display unit 141) may be arranged inside the screen, and the pressed position on the display screen may be detected by pressing the display screen.
  • the position input device (display operation device) described above may be configured to detect the pressed position with four pressure-sensitive sensors arranged at the four corners of the transparent plate.
  • FIG. Embodiment 6 will be described with reference to FIGS. 22 to 27.
  • FIG. 22 is an overall perspective view showing an example of the appearance of touch panel 800 in this embodiment.
  • the touch panel 800 further includes six operation switches 180a to 180f in addition to the configuration described in the first to fifth embodiments.
  • the operation switches 180a to 180f are located outside the operation screen 810.
  • the touch panel 800 determines the operation switches 180a to 180f pressed by the user, and transmits data representing the determined determination result to the information processing apparatus.
  • the touch panel 800 discriminates between when the user presses the operation switches 180a to 180f and when the user presses the button 811 displayed in the operation screen 810.
  • the information processing apparatus may assign the same function as the button 811 displayed at the corresponding position in the operation screen 810 to the operation switches 180a to 180f, or a function different from the button 811 displayed in the operation screen 810. May be assigned.
  • FIG. 23 is an exploded perspective view showing an example of the structure of touch panel 800 in this embodiment.
  • the operation switches 180 a to 180 f are part of the main body 100.
  • the operation switches 180a to 180f also serve as the detection position support portions 120a to 120f described in the first to fifth embodiments. That is, the operation switches 180a to 180f support the operation plate 110, and transmit the pressure when the user presses the operation plate 110 to the pressure sensors 150a to 150f.
  • the operation switches 180a to 180f and the detection position support portions 120a to 120f may be configured as separate parts.
  • the decorative plate 820 has through holes 822a to 822f at positions corresponding to the operation switches 180a to 180f. The upper part of the operation switches 180a to 180f passes through the through holes 822a to 822f and comes out above the decorative plate 820, so that the user can press the operation switches 180a to 180f.
  • FIG. 24 is an exploded perspective view showing an example of the structure of the main body 100 in this embodiment.
  • the operation plate 110 has six tongue portions 113.
  • the tongue 113 is provided at a position corresponding to the pressure detection position of the operation plate 110.
  • the operation switches 180 a to 180 f have a substantially rectangular parallelepiped shape and have a tongue support part 121.
  • the tongue support part 121 is a through hole provided in a lateral direction in the middle of the operation switches 180a to 180f.
  • FIG. 25 is a schematic diagram showing an example of the operation of the touch panel 800 in this embodiment.
  • the operation plate 110 hereinafter referred to as “Case A”
  • the pressure is transmitted to the pressure sensor 150 via the tongue 113 and the operation switch 180.
  • the operation switch 180 hereinafter referred to as “Case B”
  • the pressure is transmitted to the pressure sensor 150 via the operation switch 180.
  • FIG. 26 is a graph showing an example of the detected position pressure detected by the pressure sensors 150a to 150f in this embodiment.
  • a graph 701 represents a case A (when a position near the operation switch 180d in the operation panel 110 is pressed), and a graph 702 represents a case B (when the operation switch 180d is pressed).
  • the horizontal axis represents the pressure sensors 150a to 150f.
  • the vertical axis represents the detected position pressure detected by each pressure sensor 150 (difference in which the detected position pressure detected by each pressure sensor 150 during no operation is 0).
  • the unit of the vertical axis is, for example, weight gram per square millimeter (gf / mm 2 ).
  • P h represents the down-threshold value.
  • the pressing determination threshold is a threshold for determining whether the user has pressed the operation panel 110 or the operation switch 180.
  • Pl represents a non-pressing determination threshold value.
  • the non-pressing determination threshold is a threshold for determining whether the user has pressed the operation panel 110 or the operation switch 180.
  • FIG. 27 is a flowchart showing an example of the flow of the press determination process S640 in this embodiment.
  • the pressure position determination apparatus 200 determines whether the operation plate 110 or the operation switch 180 is pressed.
  • the pressing determination process S640 includes a pressing threshold determination step S641 and a non-pressing threshold determination step S642.
  • the threshold determination unit 234 using the CPU 911, based on the detected position pressure plurality of pressure sensors 150 detects, of the pressure sensor 150 detects the detection position pressure exceeding the pressing determining threshold P h Calculate the number. If the number of the pressure sensor 150 detects the detection position pressure exceeding the pressing determining threshold P h is 1 or more, the process proceeds to unpressed threshold determination step S642. If there is no pressure sensor 150 detects the detection position pressure exceeding the pressing determining threshold P h, the position determination unit 235, using the CPU 911, the operation plate 110 also determines that the operation switch 180 is also not depressed, depression determining process S640 ends.
  • the threshold determination unit 234 using the CPU 911, the pressure sensor based on the detected position pressure plurality of pressure sensors 150 detects, detects a detection position pressure exceeding the non-down-threshold value P l The number of 150 is calculated. If the number of non-down-threshold value P the pressure sensor 150 l detected a detection position pressure exceeding the there is only one, the position determination unit 235, using the CPU 911, a detection position pressure exceeding the non-down-threshold value P l It is determined that the operation switch 180 corresponding to the detected pressure sensor 150 has been pressed, and the pressing determination process S640 ends.
  • the pressed position determination device 200 determines that the operation plate 110 is pressed, depressed The determination process S640 ends. Thereafter, the pressurization position determination device 200 executes a pressurization position determination process S610 to determine which of the operation panels 110 has been pressed.
  • the pressure sensor 150 provided to detect the position when pressure is applied to the operation plate 110 is configured to detect pressure even when the operation switch 180 is pressed. Since it is not necessary to separately provide a sensor (for example, a tact switch) for detecting that the operation switch 180 is pressed, the number of components of the touch panel 800 can be reduced. Thereby, the touch panel 800 can be reduced in size and manufacturing cost can be suppressed.
  • a sensor for example, a tact switch
  • the non-down-threshold value P l may be a predetermined value, based on the detected maximum pressure maximum determination unit 231 has been calculated, the threshold determination unit 234 may be a value calculated. For example, as the difference between the detected maximum pressure and a non-down-threshold value P l (hereinafter referred to as "pressure difference threshold ⁇ P".) Set in advance to a value greater than 0, the threshold determination unit 234, using the CPU 911, The non-pressing determination threshold value Pl is calculated by subtracting the pressure difference threshold value ⁇ P from the detected maximum pressure calculated by the maximum determining unit 231.
  • the threshold determination unit 234 uses the CPU 911.
  • the non-pressing determination threshold value Pl is calculated by multiplying the detected maximum pressure calculated by the maximum determination unit 231 by the pressure ratio threshold value ⁇ .
  • the threshold value determination unit 234 instead of comparing the detected position pressure by calculating the non-down-threshold value P l, using a CPU 911, and calculates a difference or ratio between the detected maximum pressure and the detected position pressure, the pressure It may be configured to compare with the difference threshold value ⁇ P or the pressure ratio threshold value ⁇ .
  • the position input device (touch panel 800) in this embodiment further includes operation switches 180a to 180f.
  • the operation switches 180a to 180f correspond to any of the pressure detection devices (pressure sensors 150a to 150f), and when pressed, the detected position pressure is applied to the corresponding pressure detection device.
  • the pressurization position determination device 200 determines whether or not the operation switches 180a to 180f are pressed based on at least two detection position pressures detected by at least two pressure detection devices.
  • the detected position pressure is applied to the pressure detection device by pressing the operation switches 180a to 180f, and it is determined whether or not the operation switches 180a to 180f are pressed. Therefore, there is no need to separately provide a sensor for detecting the pressing of the operation switches 180a to 180f, and the number of parts of the position input device can be reduced, the manufacturing cost can be reduced, and the size can be reduced.
  • the position input device in the form of (touch panel 800), the pressed position determination device 200, a pressure detecting device corresponding to the operating switches 180a ⁇ 180f (the pressure sensors 150a ⁇ 150f) has a predetermined down-threshold value P h
  • the detection position pressure detected by the pressure detection device corresponding to the operation switches 180a to 180f is set as a pressing candidate pressure, and the detection position pressure detected by another pressure detection device is a non-pressing candidate.
  • the unpressed candidate pressure above the predetermined non-down-threshold value P l when the ratio of the non-depressed candidate pressure on the case and the depressed candidate pressure smaller is smaller than a predetermined pressure ratio threshold ⁇ and the pressing candidate pressure Of the three cases where the difference obtained by subtracting the non-pressing candidate pressure is larger than the predetermined pressure difference threshold ⁇ P, the difference is small. It determines that the case of the one, and the operation switch is pressed.
  • the position input device touch panel 800 in this embodiment, it is possible to easily determine when the operation switches 180a to 180f are pressed and when the operation plate 110 is pressed.
  • the pressure detection position is located outside the operation area on the operation plate 110, and operation switches 180a to 180f are formed on the pressure detection devices (pressure sensors 150a to 150f).
  • the pressurization position determination device 200 determines the pressurization position and pressing of the operation switches 180a to 180f based on at least two detection position pressures detected by the at least two pressure detection devices.
  • the operation switches 180a to 180f are disposed on the pressure sensors 150a to 150f that detect pressure when an arbitrary position of the operation plate 110 is pressed.
  • Sensors 150a to 150f detect the pressing force. Since the pressure sensors 150a to 150f detect both when the operation switches 180a to 180f are pressed and when the operation plate 110 is pressed, it is necessary to separate these presses.
  • Embodiment 7 will be described with reference to FIGS. 28 to 32.
  • FIG. 28 is an overall perspective view showing an example of the appearance of touch panel 800 in this embodiment.
  • the touch panel 800 has operation screens 810a to 810f (separation areas) divided into six.
  • the operation screens 810a to 810f each display one button 811.
  • the operation screens 810a to 810f are arranged in a grid pattern in three columns in the horizontal direction and two rows in the vertical direction.
  • FIG. 29 is an exploded perspective view showing an example of the structure of touch panel 800 in this embodiment.
  • the decorative plate 820 has a bridging portion 823.
  • the bridging portion 823 divides the opening 821 into six openings 821a to 821f.
  • the central part 111 of the main body 100 is divided into six central parts 111a to 111f corresponding to the openings 821a to 821f.
  • FIG. 30 is an exploded perspective view showing an example of the structure of the main body 100 in this embodiment.
  • the main body 100 has four pressure sensors 150g to 150j.
  • the pressure sensors 150g to 150j are located between the operation plate 110 and the operation screen display device 140. Since the pressure sensors 150 g to 150 j are arranged at a position directly below the bridging portion 823 of the decorative plate 820, they are not visible from the outside of the touch panel 800.
  • the pressure detection position of the pressure sensor 150g is a position between the two central portions 111a and 111b.
  • the pressure detection position of the pressure sensor 150h is a position between the two central portions 111b and 111c.
  • the pressure detection position of the pressure sensor 150i is a position between the two central portions 111d and 111e.
  • the pressure detection position of the pressure sensor 150j is a position between the two central portions 111e and 111f.
  • the detection position support part 120 is not illustrated in this figure, the detection position support part 120 is provided and the pressure sensor is provided via the detection position support part 120 as in the first to sixth embodiments.
  • 150g to 150j may be configured to detect the detected position pressure.
  • the display content of the button 811 can be changed by changing the display of the operation screen display device 140.
  • the display content 811 may be displayed in advance on the central portion 111 by printing or the like, and the operation screen display device 140 may not be provided.
  • FIG. 31 is a graph showing an example of the detected position pressure detected by the pressure sensors 150g to 150j in this embodiment.
  • a graph 703 represents a case where the user presses the center portion 111a.
  • a graph 704 represents a case where the user presses the center portion 111b.
  • a graph 705 represents a case where the user presses the center portion 111c.
  • a graph 706 represents a case where the user presses the center portion 111d.
  • a graph 707 represents a case where the user presses the center portion 111e.
  • a graph 708 represents a case where the user presses the center portion 111f.
  • the detected position pressure detected by the pressure sensors 150g and 150h increases, and conversely, the pressure sensors 150i, The detected position pressure detected by 150j is reduced.
  • the detected position pressure detected by the pressure sensors 150i and 150j increases, and conversely, the pressure sensor The detection position pressure detected by 150 g and 150 h is small.
  • the detected position pressure detected by the pressure sensor 150g or the pressure sensor 150i adjacent to the pressed position is pressed. Although exceeds the determination threshold P h, detection position pressure detected by the far the pressure sensor 150h and a pressure sensor 150j from pressed position does not exceed the pressing determining threshold P h. Conversely, when the user presses one of the two central portions 111c and 111f located at the right end of the operation panel 110, the detected position pressure detected by the pressure sensor 150h or the pressure sensor 150j adjacent to the pressed position.
  • the detection position pressure detected by the pressure sensors 150 g ⁇ 150j when a user a position adjacent to the pressure detection position presses, exceeds the pressing determining threshold P h.
  • FIG. 32 is a flowchart showing an example of the flow of the pressed position determination process S610 in this embodiment.
  • the pressed position determination process S610 includes a pressing threshold determination process S651, an adjacent determination process S652, and an end determination process S653.
  • the threshold determination unit 23 using the CPU 911, based on the detected position pressure by the pressure sensor 150 g ⁇ 150j detects, determines the pressure sensor has detected a detection position pressure exceeding the pressing determining threshold P h To do. If there is no pressure sensor has detected a detection position pressure exceeding the pressing determining threshold P h, pressed position determination device 200, using the CPU 911, determines that the operation plate 110 is not pressed, the pressed position determination process S610 Exit. If there is a pressure sensor that detects a detection position pressure exceeding the pressing determining threshold P h, the process proceeds to the adjacent determination step S652.
  • the position determination unit 235 uses the CPU 911 to determine whether or not there is a pressure sensor whose pressure detection position is adjacent among the pressure sensors determined by the threshold value determination unit 234 in the pressing threshold determination step S651. judge.
  • a pressure sensor having adjacent pressure detection positions is a pressure sensor having a pressure detection position at a position sandwiching one central portion. For example, the pressure detection position is adjacent to the pressure sensor 150g and the pressure sensor 150h, but the pressure detection position is not adjacent to the pressure sensor 150g and the pressure sensor 150i.
  • the position determination unit 235 uses the CPU 911 to determine that the center portion sandwiched between the adjacent pressure detection positions has been pressed, and ends the pressure position determination processing S610. . If there is no pressure sensor whose pressure detection position is adjacent (including the case where there is only one pressure sensor determined by the threshold determination unit 234 in the pressing threshold determination step S651), the process proceeds to the end determination step S653.
  • the position determination unit 235 uses the CPU 911 to determine whether or not there is a pressure sensor whose pressure detection position is at the end among the pressure sensors determined by the threshold determination unit 234 in the pressing threshold determination step S651. Determine.
  • a pressure sensor having a pressure detection position at the end is a pressure sensor without a pressure sensor having a pressure detection position at a position sandwiching a central portion adjacent to the pressure detection position.
  • the pressure sensor 150g has two central portions 111a and 111b whose pressure detection positions are adjacent to each other. Of these, the central portion 111b is sandwiched between the pressure detection positions of the pressure sensor 150h, but the central portion 111a is not sandwiched between the pressure detection positions of any pressure sensors.
  • the pressure sensor 150g has the pressure detection position at the end.
  • the central portions 111a to 111f are arranged in three rows in the horizontal direction, each of the pressure sensors 150g to 150j has the pressure detection position at the end.
  • the edge determination step S653 may be omitted.
  • the central portion is arranged in four or more rows in the horizontal direction, some pressure sensors do not have the pressure detection position at the end.
  • the position determination unit 235 uses the CPU 911 to locate the center adjacent to the pressure detection position.
  • the position determination unit 235 uses the CPU 911 to not press the operation plate 110. And pressurization position determination processing S610 ends.
  • the pressure sensors 150g to 150j that separate the operation region into a plurality of portions and set the pressure detection positions at the positions sandwiched between the separation regions separated in a grid pattern, the positions corresponding to the separation regions are set.
  • the number of pressure sensors may be smaller for each separation region. Thereby, the number of parts of the touch panel 800 can be reduced, the manufacturing cost can be reduced, and the size can be reduced.
  • the position input device determines a pressure position where pressure is applied when pressure is applied to an arbitrary position in the operation area.
  • the position input device includes an operation plate 110, at least two pressure detection devices (pressure sensors 150g to 150j), and a pressure position determination device 200.
  • the operation plate 110 has a flat plate shape and has the operation region on one surface.
  • the pressure detection device detects a detection position pressure generated by a pressure applied to the pressurization position at a pressure detection position different from other pressure detection devices.
  • the operation region has a plurality of separation regions (center portions 111a to 111f) separated from each other.
  • the pressure detection position is located between the plurality of separation regions on the operation plate 110.
  • the pressurization position determination device 200 determines which of the plurality of separation regions includes the pressurization position based on at least two detection position pressures detected by the at least two pressure detection devices.
  • the number of pressure detection devices can be reduced as compared with the case where a pressure detection device having positions corresponding to a plurality of separation regions as pressure detection positions is provided. Therefore, the number of parts of the position input device can be reduced, the manufacturing cost can be reduced, and the size can be reduced.
  • the position input device described above determines a pressurization position where pressure is applied when pressure is applied to a plurality of predetermined positions in the operation region.
  • the position input device includes an operation plate 110, at least two pressure detection devices (pressure sensors 150g to 150j), and a pressure position determination device 200.
  • the operation plate 110 has a flat plate shape and has the operation region on one surface.
  • the pressure detection device detects a detection position pressure generated by a pressure applied to the pressurization position at a pressure detection position different from other pressure detection devices.
  • a pressure detection device is arranged at a boundary position between a plurality of predetermined positions in the operation region.
  • the pressure position determination device 200 determines the pressure position based on at least two detected position pressures detected by at least two pressure detection devices.
  • the pressed position may be printed on the operation plate 110, or only the pressed position is a transparent operation plate, and the display device (operation screen display device 140) having the size of the operation plate 110 from the back side. May be displayed.
  • the pressure sensor 150 is arranged at the boundary portion of each pressed position. When the leftmost button is pressed, pressure is applied to the pressure sensor 150 existing between the leftmost button and the button to the right of the button, so the pressed position can be specified from the pressure value of each pressure sensor 150. It is. Further, when an intermediate button is pressed, pressure is applied to the pressure sensors 150 on both sides of the button, and no pressure is generated otherwise, so that the pressed position can be easily detected.
  • the pressure sensor 150 By disposing the pressure sensor 150 at the boundary position of the button in this way, it is possible to accurately determine the position of the pressed button as compared with the case where the pressure sensor 150 is disposed immediately below the pressed position. Since the number of the components can be reduced by one, cost reduction and high accuracy can be realized. Even if the pressure sensor 150 is opaque, it is arranged at the boundary position, so that the design is good even if printing is performed on the back surface of the operation plate 110 so that only the boundary position is not visible and the display device is disposed on the back surface. Can be realized.
  • Embodiment 8 FIG. An eighth embodiment will be described with reference to FIG. Note that portions common to Embodiments 1 to 7 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 33 is an overall perspective view showing an example of the appearance of touch panel 800 in this embodiment.
  • the touch panel 800 has operation screens 810a to 810f (separation areas) divided into six as in the seventh embodiment.
  • the touch panel 800 has four operation switches 180g to 180j.
  • the operation switches 180g to 180j are located outside the entire operation screens 810a to 810f and on an extension line of the bridging portion 823 that divides the operation screens 810a to 810f.
  • the structure of the operation switches 180g to 180j is the same as that described in the sixth embodiment.
  • There are pressure sensors 150g to 150j (not shown) at positions directly below the operation switches 180g to 180j, and the detected position pressure is detected when the operation plate 110 or the corresponding operation switches 180g to 180j are pressed.
  • the pressure positions are determined as in the seventh embodiment. be able to. Further, in combination with the configuration of the sixth embodiment, operation switches 180g to 180j corresponding to the pressure sensors 150g to 150j may be provided.
  • the position input device (touch panel 800) described above arranges the position of the pressure sensor 150 on the extension line of the boundary position. By arranging in this way, the operation unit can be designed without worrying about the boundary portion, so that the degree of freedom of design increases.
  • buttons 811 may be arranged in a horizontal row or in two rows. By disposing the pressure sensor 150 so as to escape above and below the button 811, it is possible to design a design without worrying about the boundary portion even when a display device is disposed on the back surface.
  • Embodiment 9 will be described with reference to FIGS. 34 to 42.
  • FIG. 34 is a perspective view showing an example of the structure of the main body 100 in this embodiment.
  • the main body 100 has four operation plate support portions 135g to 135j and four support adjustment portions 190g to 190j.
  • the operation plate support portions 135g to 135j are located in the middle of the pressure detection positions of the adjacent pressure sensors 150 and support the operation plate 110.
  • the support adjustment units 190g to 190j correspond to the operation plate support units 135g to 135j, respectively, and adjust the height of the corresponding operation plate instruction units 135g to 135j.
  • the operation plate support portions 135g to 145j support the operation plate 110 in the middle of the pressure detection position of the pressure sensor 150, thereby preventing the pressure applied to the operation plate 110 from being transmitted to the pressure sensor far from the pressurization position. This makes it easy to determine the pressure position.
  • FIG. 35 is an enlarged front view showing an example of the structure of the support adjustment unit 190 in this embodiment.
  • the support adjustment unit 190 includes, for example, an adjustment screw 191.
  • the adjustment screw 191 is screwed into a screw hole 161 provided in the bottom plate 160. By rotating the adjustment screw 191, the height of the operation plate support part 135 can be changed.
  • the detected position pressure detected by the pressure sensor 150 can be adjusted by adjusting the height of the operation plate support portion 135.
  • the position input device determines a pressure position where pressure is applied when pressure is applied to an arbitrary position in the operation area.
  • the position input device includes an operation plate 110, at least two pressure detection devices (pressure sensors 150), and a pressure position determination device 200.
  • the operation plate 110 has a flat plate shape and has the operation region on one surface.
  • the pressure detection device detects a detection position pressure generated by a pressure applied to the pressurization position at a pressure detection position different from other pressure detection devices. Between two continuous pressure detection devices, a support unit (operation plate support unit 135, support adjustment unit 190) having a mechanism for controlling the height is provided, and pressure detection is performed by changing the height of the support unit. Adjust the pressure applied to the device.
  • the pressure position determination device 200 determines the pressure position based on at least two detected position pressures detected by at least two pressure detection devices.
  • the operation plate support portion 135 and the support adjustment portion 190 are attached between the pressure sensors 150. It is assumed that the place where the operation plate is operated (pressed) exists at a position between the support portions.
  • the support portion is disposed at the center of two continuous pressure sensors 150, and the height of the support portion can be changed from the back by a height adjusting screw (adjustment screw 191). If this height is increased, the pressure is not transmitted to the pressure sensor until the pressing pressure reaches a certain value or more. In this manner, by adjusting the initial pressure, it is possible to change the operational feeling and correct the sensitivity variation of the pressure sensor 150.
  • FIG. 36 is an enlarged front view showing another example of the structure of the support adjustment unit 190 in this embodiment.
  • the support adjustment unit 190 includes, for example, a fixing screw 192.
  • the fixing screw 192 is inserted into a guide hole 162 provided in the bottom plate 160 and screwed into the operation plate support portion 135.
  • the operation plate support portion 135 can be fixed so as not to move, and by loosening the fixing screw 192, the operation plate support is supported.
  • the part 135 can be moved in the direction of the guide hole 162.
  • the detected position pressure detected by the pressure sensor 150 is reduced. Conversely, when the position of the operation plate support part 135 is far from the pressure detection position, the pressure sensor 150 is The detection position pressure to be detected increases. Further, by changing the position of the operation plate support part 135, the range of the pressurization position where each pressure sensor 150 detects the detected position pressure can be changed.
  • the position input device determines a pressure position where pressure is applied when pressure is applied to an arbitrary position in the operation area.
  • the position input device includes an operation plate 110, at least two pressure detection devices (pressure sensors 150), and a pressure position determination device 200.
  • the operation plate 110 has a flat plate shape and has the operation region on one surface.
  • the pressure detection device detects a detection position pressure generated by a pressure applied to the pressurization position at a pressure detection position different from other pressure detection devices. Between two continuous pressure detection devices, the pressure detection device has a support portion (operation plate support portion 135, support adjustment portion 190) having a mechanism movable in a plane, and changes the position of the support portion. Adjust the pressure applied to.
  • the pressure position determination device 200 determines the pressure position based on at least two detected position pressures detected by at least two pressure detection devices.
  • FIG. 37 is an enlarged front view showing still another example of the structure of the support adjusting unit 190 in this embodiment.
  • the operation plate support part 135 is divided into a left support part 136 and a right support part 137.
  • the left side support part 136 and the right side support part 137 have a taper inside.
  • the support adjustment unit 190 includes an adjustment screw 191 and two elastic bodies 193.
  • the adjustment screw 191 is screwed into a screw hole 161 provided in the bottom plate 160.
  • the elastic body 193 is, for example, rubber, resin, spring, or the like, and connects the left support portion 136 and the right support portion 137 and exerts a force for attracting both.
  • the tip of the adjustment screw 191 has a substantially conical shape and comes into contact with a taper provided inside the left side support part 136 and the right side support part 137.
  • the adjustment screw 191 is rotated and the position of the adjustment screw 191 is lowered, the space between the left support portion 136 and the right support portion 137 is pushed and widened, and the entire width of the operation plate support portion 135 is widened.
  • the adjustment screw 191 is rotated to raise the position of the adjustment screw 191
  • the left support portion 136 and the right support portion 137 are drawn by the action of the elastic body 193, and the overall width of the operation plate support portion 135 is reduced. Narrow.
  • the position input device determines a pressure position where pressure is applied when pressure is applied to an arbitrary position in the operation area.
  • the position input device includes an operation plate 110, at least two pressure detection devices (pressure sensors 150), and a pressure position determination device 200.
  • the operation plate 110 has a flat plate shape and has the operation region on one surface.
  • the pressure detection device detects a detection position pressure generated by a pressure applied to the pressurization position at a pressure detection position different from other pressure detection devices. Between the two consecutive pressure detection devices, there is a support portion (operation plate support portion 135, support adjustment portion 190) having a mechanism for changing the support width, and by changing the support width, the pressure detection device Adjust the applied pressure.
  • the pressure position determination device 200 determines the pressure position based on at least two detected position pressures detected by at least two pressure detection devices.
  • the support part is disposed between two continuous pressure sensors 150, and the support part can change the width of the support part from the back by a conical support width adjusting screw (adjustment screw 191). It is.
  • the support portion is held by an integrally molded resin spring (elastic body 193), and the width of the support portion can be increased or decreased by screwing a conical support width adjusting screw.
  • the area where the pressure sensor 150 detects pressure can be reduced. Since the area that can be operated can be limited in this way, it is possible to adjust the ratio of erroneous operation and the balance of usability.
  • FIG. 38 is a perspective view showing still another example of the structure of the support adjusting portion 190 in this embodiment.
  • the operation plate support part 135 is divided into a left support part 136 and a right support part 137 as in the example of FIG.
  • the support adjustment unit 190 includes a base portion 410, a first movable portion 420, and a second movable portion 430.
  • the base 410 is a portion of the support adjustment unit 190 whose position does not change, and is fixed or semi-fixed to the bottom plate 160.
  • the base 410 may be formed integrally with the bottom plate 160.
  • the first movable part 420 is located above the base part 410 and the position in the vertical direction with respect to the base part 410 changes.
  • the second movable part 430 is positioned on the first movable part 420, and the vertical position of the second movable part 430 changes together with the first movable part 420. Further, the second movable portion 430 changes its horizontal position with respect to the first movable portion 420.
  • the left support part 136 and the right support part 137 are positioned on the second movable part 430, and the positions in the vertical direction and the horizontal direction change together with the second movable part 430. Further, the distance between the left support portion 136 and the right support portion 137 changes.
  • FIG. 39 is an exploded perspective view showing the structure of the support adjusting portion 190 in this example.
  • the base 410 has a height adjustment screw 411, a disk part 412, a bottom part 416, and two side parts 417.
  • the height adjusting screw 411 is screwed into a screw hole provided in the bottom surface portion 416.
  • the disc portion 412 is fixed to the tip of the height adjustment screw 411. By rotating the height adjusting screw 411, the height of the disc portion 412 can be changed.
  • the two openings 413 and 414 are provided in the bottom surface portion 416, and are through holes for passing the axes of a position adjusting screw 421 and a width adjusting screw 431, which will be described later.
  • the four guide groove portions 415 are grooves provided in the vertical direction on the inner side of the side surface portion 417 and restrict the movable direction of the first movable portion 420.
  • the first movable portion 420 includes a position adjusting screw 421 (see FIG. 40), a gear box 422, and a flat portion 426.
  • the flat surface portion 426 is placed on the disc portion 412 and moves up and down as the disc portion 412 moves up and down.
  • the position adjusting screw 421 is inserted into a through hole provided in the flat portion 426 and connected to a gear in the gear box 422.
  • the gear box 422 has two gears having the same number of teeth meshing with each other. By rotating the position adjusting screw 421, the two gears of the gear box 422 rotate in opposite directions.
  • the opening 423 is a through hole provided in the flat portion 426 and through which the axis of the width adjusting screw 431 passes.
  • the four guide protrusions 424 are protrusions provided on the side surface of the flat surface portion 426 and engage with the guide groove portions 415, respectively.
  • the guide protrusion 424 moves in the direction along the guide groove 415, thereby restricting the movable direction of the first movable part 420.
  • the three guide groove portions 425 are grooves provided on the upper surface of the flat surface portion 426, and restrict the movable directions of the second movable portion 430, the left side support portion 136, and the right side support portion 137.
  • the second movable portion 430 includes a width adjusting screw 431, a gear box 432, arm portions 436, and a frame portion 437.
  • the width adjusting screw 431 is inserted into a through hole provided in the arm portion 436 and connected to a gear in the gear box 432.
  • the gear box 432 has one gear.
  • the two rack gears 433 are provided inside the frame portion 437 and mesh with the two gears of the gear box 422 to convert the rotational movement of the gears into a horizontal linear movement.
  • the gear of the gear box 422 is rotated by rotating the position adjusting screw 421, the entire second movable portion 430 is moved in the lateral direction.
  • the three guide protrusions 434 are protrusions provided on the lower surfaces of the arm part 436 and the frame part 437, and engage with the guide groove part 425, respectively.
  • the two guide groove portions 435 are grooves provided on the upper surface of the frame portion 437, and restrict the movable directions of the left support portion 136 and the right support portion 137.
  • the left support part 136 and the right support part 137 have a rack gear 138 and three guide protrusions 139, respectively.
  • the rack gear 138 meshes with the gear of the gear box 432, and converts the rotational movement of the gear into a horizontal linear movement.
  • the gear of the gear box 432 is rotated by rotating the width adjusting screw 431
  • the left support part 136 and the right support part 137 move in directions opposite to each other.
  • the three guide protrusions 139 engage with the guide groove portions 425 and 435.
  • the guide protrusion 139 moves in the direction along the guide groove portions 425 and 435, the movable directions of the left support portion 136 and the right support portion 137 are restricted.
  • FIG. 40 is a cross-sectional side view showing the movement of the support adjusting unit 190 in this example.
  • the disc portion 412 moves up and down. Accordingly, the first movable portion 420 placed on the disk portion 412 and the second movable portion 430, the left side support portion 136, and the right side support portion 137 placed thereon further move up and down as a whole. To do.
  • FIG. 41 is a plan view and a side view sectional view showing another movement of the support adjusting unit 190 in this example.
  • the gear of the gear box 422 is rotated, which is converted into a linear motion, and the second movable portion 430 and the left support portion 136 and the right support portion 137 placed thereon are Move horizontally as a whole.
  • FIG. 42 is a plan view and a side view sectional view showing still another movement of the support adjusting portion 190 in this example.
  • the width adjusting screw 431 is rotated, the gear of the gear box 432 is rotated, which is converted into a linear motion, and the left side support part 136 and the right side support part 137 move in directions opposite to each other. Thereby, the space
  • the height adjustment screw 411 By rotating the height adjustment screw 411, the position adjustment screw 421, and the width adjustment screw 431, the height, position, and width of the operation plate support portion 135 can be adjusted.
  • a mechanism for adjusting any one of the height, position, and width of the operation plate support portion 135 may be omitted. Further, a mechanism for adjusting the width or the position in the vertical direction of the operation plate support part 135 may be added.
  • the position input device (touch panel 800) in this embodiment further includes an operation plate support adjustment unit (support adjustment unit 190).
  • the operation plate support adjustment unit can adjust at least one of a height, a position, a width, and a width at which the operation plate support unit 135 supports the operation plate 110.
  • the detection position pressure detected by the pressure detection device is easily adjusted by adjusting the height of the operation plate support portion 135 and the like. be able to.
  • the position input device (touch panel 800) described above can be changed with a higher degree of freedom by using a combination of mechanisms that can adjust the height, position, and width of the support units (operation plate support unit 135, support adjustment unit 190). Is possible.
  • a mechanism similar to the support adjustment unit 190 described in this embodiment may be provided in the operation plate support unit 131, the operation plate support receiving unit 132, the detection position support unit 120, and the like.
  • a similar mechanism may be provided in the support portion configured by the operation plate support portion 131, the operation plate support receiving portion 132, and the elastic body 133.
  • the design such that the position of the button for pressing the operation plate 110 is biased upward or biased downward.
  • the width of the support portion adjustable, it is possible to adjust the detection sensitivity with respect to the pressing force and to increase or decrease the area where no pressure is detected when the operation plate is pressed.
  • the position input device (touch panel 800) described above adjusts the pressure balance applied to the pressure detection device (pressure sensor 150) or the sensitivity of the pressure detection device by changing the height of each operation plate support.
  • Embodiment 10 FIG. The tenth embodiment will be described with reference to FIGS. 43 to 45.
  • FIG. 43 is a perspective view showing an example of the appearance of the numerical value input device 850 in this embodiment.
  • the numerical value input device 850 is an application of the touch panel 800 described in the first to ninth embodiments.
  • the numerical value input device 850 displays the input numerical value on the operation screen 810.
  • the numerical value may be digitally displayed as shown, or may be displayed using a graphic such as a bar graph.
  • the numerical value input by the numerical input device 850 may be used by an external device such as a set temperature of an air conditioner, or may be used inside the numerical input device 850 such as sensitivity adjustment of the pressure sensor 150. There may be.
  • the numerical value input device 850 displays at least two buttons 811 on the operation screen 810 in addition to the input numerical value.
  • One button 811 is an increase button that increases a numerical value
  • the other one button 811 is a decrease button that decreases a numerical value.
  • FIG. 44 is a block configuration diagram showing an example of a functional block configuration of the numerical value input device 850 in this embodiment.
  • the numerical value input device 850 includes a numerical value storage device 270 and a numerical value change device 280 in addition to the pressure position determination device 200.
  • the numerical value storage device 270 and the numerical value change device 280 may be configured using the same hardware as the pressure position determination device 200 such as the CPU 911 and the RAM 914, or hardware different from the pressure position determination device 200. You may comprise.
  • the numerical value storage device 270 uses the RAM 914 to store numerical values.
  • the pressure position determination device 200 uses the CPU 911 to generate an operation screen including the numerical value stored in the numerical value storage device 270 and the increase button / decrease button, and causes the operation screen display device 140 to display the operation screen.
  • the pressurization position determination device 200 uses the CPU 911 to calculate the pressed pressure position and the pressed pressure.
  • the numerical value changing device 280 includes a button determination unit 281, a pressure determination unit 282, a difference interval determination unit 283, and a difference addition / subtraction unit 284.
  • the button determination unit 281 determines whether the user has pressed the increase button or the decrease button using the CPU 911.
  • the pressure determination unit 282 determines whether the pressure at which the user presses the operation plate 110 is larger or smaller than a predetermined threshold using the CPU 911.
  • the difference interval determination unit 283 uses the CPU 911 to determine the difference and interval for changing the numerical value.
  • the difference addition / subtraction unit 284 changes the numerical value stored in the numerical value storage device 270 using the CPU 911 based on the difference and the interval determined by the difference interval determination unit 283.
  • FIG. 45 is a flowchart showing an example of the flow of the numerical value changing process S660 in this embodiment.
  • the numerical value changing device 280 changes the numerical value stored in the numerical value storage device 270 based on the determination result of the pressure position determining device 200.
  • the numerical value changing process S660 includes a button determination step S661, a pressure determination step S662, a first difference interval determination step S663, a second difference interval determination step S664, a difference addition / subtraction step S665, and a standby step S666.
  • the button determination unit 281 determines the button 811 pressed by the user using the CPU 911 based on the pressure position calculated by the pressure position determination device 200. If the button 811 pressed by the user is an increase button or a decrease button, the process proceeds to a pressure determination step S662. If the button 811 pressed by the user is any other button, or if the user has not pressed the button 811, the numerical value changing process S ⁇ b> 660 ends.
  • the pressure determination unit 282 uses the CPU 911 based on the pressure calculated by the pressurization position determination device 200 to check whether the pressure at which the user presses the increase button or the decrease button is greater than a predetermined threshold. Determine if it is small.
  • the process proceeds to the first difference interval determination step S663.
  • the process proceeds to the second difference interval determination step S664.
  • the difference interval determination section 283 uses the CPU 911, a predetermined value d 1 and the difference [Delta] x, and the interval ⁇ t a predetermined value t 1. Then, it progresses to difference addition / subtraction process S665.
  • the difference interval determination section 283 using the CPU 911, the predetermined value d 2 and the difference [Delta] x, and the interval ⁇ t a predetermined value t 2. Then, it progresses to difference addition / subtraction process S665.
  • d 1 and d 2 are larger than 0, and d 1 is d 2 or more. Further, t 1 and t 2 is greater than 0, t 1 is t 2 less. However, when d 1 and d 2 are equal, t 1 is smaller than t 2 .
  • the difference addition / subtraction unit 284 uses the CPU 911 to acquire the numerical value stored in the numerical value storage device 270.
  • the difference addition / subtraction unit 284 uses the CPU 911 to perform the difference interval determination unit 283 in the first or second difference interval determination steps S663 and S664. Is added to the obtained numerical value.
  • the button 811 determined by the button determination unit 281 in the button determination step S661 is a decrease button
  • the difference addition / subtraction unit 284 uses the CPU 911 to perform the difference interval determination unit 283 in the first or second difference interval determination steps S663 and S664. Is subtracted from the obtained numerical value.
  • the numerical value storage device 270 uses the RAM 914 to store a numerical value obtained by adding or subtracting the difference ⁇ x by the difference addition / subtraction unit 284.
  • the difference addition / subtraction unit 284 waits until the interval ⁇ t determined by the difference interval determination unit 283 in the first or second difference interval determination steps S663 and S664 has elapsed using the CPU 911. After the interval ⁇ t has elapsed, the process returns to the button determination step S661.
  • the difference ⁇ x for changing the numerical value is large, or the interval ⁇ t for changing the numerical value is small, so that the speed at which the numerical value changes increases.
  • the pressure at which the user presses the increase button or the decrease button is smaller than the threshold value, the difference ⁇ x for changing the numerical value is small, or the interval ⁇ t for changing the numerical value is large, so that the speed at which the numerical value changes becomes slow. .
  • the speed at which the numerical value changes can be changed in two steps by providing a single threshold.
  • the speed at which the numerical value changes can be increased in more steps. It is good also as a structure which can be changed and it is good also as a structure which changes the speed which a numerical value changes continuously.
  • the position input device (numerical value input device 850) in this embodiment further includes a numerical value storage device 270 and a numerical value change device 280.
  • the numerical value storage device 270 stores numerical values.
  • the numerical value changing device 280 uses the detected position pressure detected by the pressure detecting device (pressure sensor 150) when the pressurized position determining device 200 determines that pressure is applied to a predetermined position in the operation area. Based on this, the difference ⁇ x and the interval ⁇ t for changing the numerical value stored in the numerical value storage device 270 are determined, and the determined difference ⁇ x is added to or subtracted from the numerical value stored in the numerical value storage device 270 at the determined interval ⁇ t.
  • the position input device (numerical value input device 850) in this embodiment, since the speed at which the numerical value is changed is changed based on the pressure applied by the user, intuitive operation is possible and the operation time is shortened. Can do.
  • the position input device (numerical value input device 850) described above changes the display speed of the set value displayed on the operation screen display device 140 in accordance with the pressure detected by the pressure detection device (pressure sensor 150). Alternatively, the number of display steps of the set value displayed on the operation screen display device 140 is changed according to the pressure detected by the pressure detection device.
  • the temperature setting value is displayed on the operation screen display device 140.
  • the numerical value input device 850 changes the temperature setting value when a button 811 (increase button / decrease button) on the operation panel 110 is pressed.
  • the numerical input device 850 changes the change speed of the temperature setting value display according to the difference in the detected pressure of the pressure sensor 150. After the pressing position is detected, if the detected pressure is equal to or higher than a certain threshold A, for example, it is changed at an update rate (interval ⁇ t) of 500 milliseconds, and if the detected pressure is equal to or greater than a certain threshold B, for example It is possible to provide an interface with good operability by changing at an update rate of 200 milliseconds.
  • the number of steps to be updated may be changed. For example, when the detected pressure is equal to or higher than a certain threshold A, the pressure is changed in units of 2 ° C., and when the detected pressure is equal to or higher than the predetermined threshold B, the temperature is changed in units of 4 ° C.
  • the numerical value may be displayed by a bar graph for setting. The update speed of the setting bar graph is changed or the number of steps to be updated is changed according to the strength of pressing the button 811.

Abstract

 利用者が操作領域に圧力を加えた場合に、圧力が加えられた加圧位置を判定する位置入力装置において、位置入力装置の製造コストを抑える。操作板110は、平板状であり、一方の面に操作領域を有する。複数の圧力センサ150(圧力検出装置)は、それぞれ異なる圧力検出位置において、加圧位置に加えられた圧力により発生する検出位置圧力を検出する。加圧位置判定装置は、複数の圧力センサ150が検出した複数の検出位置圧力に基づいて、加圧位置を判定する。

Description

位置入力装置
 この発明は、操作領域内に圧力が加えられた場合に、圧力が加えられた位置を判定する位置入力装置に関する。
 タッチパネルなど、操作画面を表示する表示装置の上に透明な圧力センサを設け、利用者が操作画面に表示されたボタンなどを押すと、圧力センサが圧力を検出し、圧力が加えられた位置を判定する装置がある。
 位置の検出方式には、例えば、操作画面とほぼ同じ大きさの対向する二枚の抵抗膜を圧力センサとして表示装置の上に設け、圧力を加えられた位置で二枚の抵抗膜が接触し、その抵抗値を測定することにより、接触位置を算出する方式などがある。
特開平7-295727号公報
 従来の方式における圧力センサは、操作画面と同等の大きさが必要であり、操作画面が大きくなると、製造コストが高くなる。
 また、利用者は、圧力センサを通して操作画面を見ることになるので、操作画面の輝度が少なからず低下し、操作画面が見えにくくなる。これを補うために操作画面の輝度を高くすると、エネルギー消費量が増える。
 この発明は、例えば、上記のような課題を解決するためになされたものであり、操作領域の大きさにかかわらず、位置入力装置の製造コストを抑えるとともに、操作画面の輝度の低下を防ぐことを目的とする。
 この発明にかかる位置入力装置は、操作領域内の任意の位置に圧力が加えられた場合に、圧力が加えられた加圧位置を判定する位置入力装置において、
 操作板と、少なくとも2つの圧力検出装置と、加圧位置判定装置とを有し、
 上記操作板は、平板状であり、一方の面に上記操作領域を有し、
 上記圧力検出装置は、他の圧力検出装置と異なる圧力検出位置において上記加圧位置に加えられた圧力により発生する検出位置圧力を検出し、
 上記圧力検出位置は、上記操作板上の上記操作領域より外側に位置し、
 上記加圧位置判定装置は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置を判定することを特徴とする。
 この発明にかかる位置入力装置によれば、圧力検出位置が操作領域より外側に位置するので、操作領域内に圧力を検出する圧力検出装置を配置する必要がない。このため、操作領域の下に操作画面を表示する操作画面表示装置を配置した場合でも、操作画面の輝度が落ちず、操作画面を見やすくすることができる。また、操作領域が大きくなっても、圧力検出装置の構成を変える必要がないので、位置入力装置の製造コストを抑えることができる。
実施の形態1におけるタッチパネル800の外観の一例を示す全体斜視図。 実施の形態1におけるタッチパネル800の構造の一例を示す分解斜視図。 実施の形態1における本体100の構造の一例を示す分解斜視図。 実施の形態1におけるタッチパネル800の構造の一例を示す側面視破断図。 実施の形態1における加圧位置判定装置200のハードウェア構成の一例を示す図。 実施の形態1における加圧位置判定装置200の機能ブロックの構成の一例を示すブロック構成図。 実施の形態1におけるボタン表示位置311と検出位置350との関係の一例を示す図。 実施の形態1における加圧位置判定処理S610の流れの一例を示すフローチャート図。 実施の形態2における本体100の構造の一例を示す分解斜視図。 実施の形態3における圧力センサ150を底板160に固定する構成の一例を示す一部拡大側面視破断図。 実施の形態3における加圧位置判定装置200の機能ブロックの構成の一例を示すブロック構成図。 実施の形態3における画面生成部242が生成する調整画面815の一例を示す図。 実施の形態3におけるセンサ調整処理S620の流れの一例を示すフローチャート図。 実施の形態4における加圧位置判定装置200の機能ブロックの構成の一例を示すブロック構成図。 実施の形態4における画面生成部242が生成する調整画面815の一例を示す図。 実施の形態4におけるセンサ調整処理S620の流れの一例を示すフローチャート図。 実施の形態5における本体100の構造の一例を示す分解斜視図。 実施の形態5における加圧位置判定装置200の機能ブロックの構成の一例を示すブロック構成図。 実施の形態5における加圧位置判定処理S610の流れの一例を示すフローチャート図。 圧力検出位置が2つの場合における力の釣り合いを示す図。 圧力検出位置が3つの場合における力の釣り合いを示す図。 実施の形態6におけるタッチパネル800の外観の一例を示す全体斜視図。 実施の形態6におけるタッチパネル800の構造の一例を示す分解斜視図。 実施の形態6における本体100の構造の一例を示す分解斜視図。 実施の形態6におけるタッチパネル800の動作の一例を示す模式図。 実施の形態6における圧力センサ150a~150fが検出する検出位置圧力の例を示すグラフ図。 実施の形態6における押下判定処理S640の流れの一例を示すフローチャート図。 実施の形態7におけるタッチパネル800の外観の一例を示す全体斜視図。 実施の形態7におけるタッチパネル800の構造の一例を示す分解斜視図。 実施の形態7における本体100の構造の一例を示す分解斜視図。 実施の形態7における圧力センサ150g~150jが検出する検出位置圧力の例を示すグラフ図。 実施の形態7における加圧位置判定処理S610の流れの一例を示すフローチャート図。 実施の形態8におけるタッチパネル800の外観の一例を示す全体斜視図。 実施の形態9における本体100の構造の一例を示す斜視図。 実施の形態9における支持調整部190の構造の一例を示す拡大正視図。 実施の形態9における支持調整部190の構造の別の例を示す拡大正視図。 実施の形態9における支持調整部190の構造の更に別の例を示す拡大正視図。 実施の形態9における支持調整部190の構造のまた更に別の例を示す斜視図。 実施の形態9における支持調整部190の構造を示す分解斜視図。 実施の形態9における支持調整部190の動きを示す側面視断面図。 実施の形態9における支持調整部190の別の動きを示す平面図及び側面視断面図。 実施の形態9における支持調整部190の更に別の動きを示す平面図及び側面視断面図。 実施の形態10における数値入力装置850の外観の一例を示す斜視図。 実施の形態10における数値入力装置850の機能ブロックの構成の一例を示すブロック構成図。 実施の形態10における数値変更処理S660の流れの一例を示すフローチャート図。
 実施の形態1.
 実施の形態1について、図1~図8を用いて説明する。
 図1は、この実施の形態におけるタッチパネル800の外観の一例を示す全体斜視図である。
 タッチパネル800(位置入力装置、表示操作機)は、図示していないケーブルなどの信号線や無線により、コンピュータなどの情報処理装置と接続している。タッチパネル800は、接続した情報処理装置から操作画面810を表わす信号を受信する。タッチパネル800は、入力した信号が表わす操作画面810を表示する。操作画面810には、1つ以上のボタン811が含まれている。表示されたボタンのいずれかを利用者が指やペンなどで押すと、タッチパネル800は、利用者が押したボタン811を判定する。タッチパネル800は、判定した判定結果を表わすデータを、接続した情報処理装置に対して送信する。
 図2は、この実施の形態におけるタッチパネル800の構造の一例を示す分解斜視図である。
 タッチパネル800は、筐体830、化粧板820、本体100を有する。
 筐体830は、上面が開口した箱状のケースであり、内部に本体100を収納する。
 本体100は、操作画面810を表示するとともに、利用者がボタン811を押したことを検出する。
 化粧板820(領域外保護部)は、筐体830の開口を覆う蓋である。化粧板820は、例えばアクリル板などで形成された枠状である。化粧板820は、中央に開口部821を有する。開口部821は、操作画面810と同じ形状であり、開口部821を通して、利用者が操作画面810を見ることができる。化粧板820は、操作画面810以外が見えないよう、例えば下側の面が塗装されている。利用者は、開口部821を通して本体100に触れることができる。化粧板820は、利用者が開口部821以外の部分を押しても、その圧力が本体100に伝わらないよう、本体100を保護する。
 図3は、この実施の形態における本体100の構造の一例を示す分解斜視図である。
 本体100は、操作板110、操作画面表示装置140、底板160を有する。
 操作画面表示装置140は、液晶表示パネル(LCD)など操作画面810を表示する装置である。操作画面表示装置140は、表示部141、枠部142を有する。表示部141は、操作画面810を実際に表示する部分である。枠部142は、表示部141の回りの部分である。操作画面表示装置140は、ネジなどの固定部材(固定冶具)を用いて、底板160(下板)に固定されている。操作画面表示装置140は、コンピュータなどの情報処理装置から表示する操作画面810を表わす信号を入力する。操作画面表示装置140は、入力した信号が表わす操作画面810を表示する。
 操作板110は、平板状であり、例えばアクリル板など透明な材料で形成される。操作板110は、中央部111、外縁部112を有する。中央部111は、操作画面810と同一の形状である。中央部111の上側の面は、ボタン操作のため利用者が触れる操作領域である。中央部111は、外縁部112よりも厚みがある。
 外縁部112には、6つの検出位置支持部120a~120f(柱)、2つの操作板支持部131が設けられている。検出位置支持部120a~120f及び操作板支持部131は、操作板110と一体に形成されたものであってもよいし、操作板110とは別部品として構成し、ネジなどの固定部材を用いて、操作板110に固定されたものであってもよい。
 底板160には、6つの圧力センサ150a~150f、2つの操作板支持受部132が設けられている。操作板支持受部132は、底板160と一体に形成されたものであってもよいし、底板160とは別部品として構成し、ネジや両面テープなどの固定部材を用いて、160に固定されたものであってもよい。
 圧力センサ150a~150f(圧力検出装置)は、検出位置支持部120a~120fに当接する位置に設けられている。検出位置支持部120a~120fは、操作板110を支持し、底板160と操作板110との間の空間を確保するとともに、利用者が操作板110を押した圧力を圧力センサ150a~150fに伝達する。圧力センサ150a~150fは、検出位置支持部120a~120fを介して、操作板110に加えられた圧力を検出する。圧力センサ150a~150fは、検出した圧力を表わす信号を出力する。
 圧力センサ150a~150fの具体的な構成は、特に限定しないが、例えばメンブレンスイッチを用いて構成することができる。下側に一対の電極を設け、上側に抵抗体を設けて、圧力を加えると上側の抵抗体が下側の一対の電極に接触することで、電極間が導通する。加えられる圧力が大きくなると、抵抗体と電極との接触面積が増え、電極間の抵抗値が下がる。圧力センサ150a~150fは、例えば電極間の抵抗値に比例する電圧を生成し、検出した圧力を表わす信号として出力する。
 操作板支持受部132は、操作板支持部131と係合する位置に設けられている。操作板支持部131と操作板支持受部132とは、操作板110を支持し、底板160と操作板110との間の空間を確保する。2つの操作板支持部131は、共通の軸を有する半円柱状であり、操作板110は、操作板支持部131及び操作板支持受部132により、操作板支持部131の軸を中心に回転自在に保持される。
 操作板110と操作板支持受部132との間には、それぞれの操作板支持受部132について2つずつ、合計4つの弾性体133が設けられている。弾性体133は、例えばゴム、スポンジ、バネなどであり、操作板110を底板160と平行に保とうとする。
 図4は、この実施の形態におけるタッチパネル800の構造の一例を示す側面視破断図である。
 操作板110と操作画面表示装置140との間には、利用者が操作板110に加えた圧力が操作画面表示装置140に伝わらないよう、隙間が形成されている。利用者が、操作板110の操作領域に圧力を加えると、操作板110が操作板支持部131の軸を中心に回転する。圧力が加えられた側の圧力センサ150に、検出位置支持部120を介して圧力が伝達され、圧力センサ150が圧力を検出する。利用者が圧力を加えるのを止めると、弾性体133の弾性力により、操作板110は、底板160と平行な状態に戻り、圧力センサ150は、圧力を検出しなくなる。
 また、利用者が化粧板820を押した場合は、外縁部112との間に隙間があるので、圧力が伝達されず、圧力センサ150は、圧力を検出しない。
 なお、操作板支持部131及び操作板支持受部132及び弾性体133が、操作板110を回転可能に保持する構成とするのではなく、操作板110と底板160とを柱などにより固定する構成としてもよい。そのような構成とした場合、利用者が操作板110に圧力を加えると、操作板110が弾性変形し、検出位置支持部120を介して、圧力センサ150に圧力が伝達される。
 また、化粧板820がない構成としてもよい。その場合、操作板110の中央部111の厚みと外縁部112の厚みとを同じにすれば、表面が平らになる。また、外縁部112の裏側を塗装することにより、タッチパネル800の内部が見えないようにすることができる。これにより、表面に透明感のある美観の優れたデザインを実現することができる。
 図5は、この実施の形態における加圧位置判定装置200のハードウェア構成の一例を示す図である。
 タッチパネル800は、更に、加圧位置判定装置200を有する。加圧位置判定装置200は、圧力センサ150が検出した圧力に基づいて、操作領域のうちどこに圧力が加えられたかを判定する。
 加圧位置判定装置200は、処理装置(以下「CPU911」と呼ぶ。)、不揮発性メモリ(以下「ROM913」と呼ぶ。)、揮発性メモリ(以下「RAM914」と呼ぶ。)、通信装置915、アナログデジタル変換装置(以下「ADC916」と呼ぶ。)を有する。
 CPU911は、ROM913が記憶したプログラムを実行することにより、加圧位置判定装置200全体を制御し、ROM913やRAM914が記憶したデータなどを処理し、以下に説明する機能ブロックを実現する。
 ROM913は、不揮発性の記憶装置であり、プログラムやデータなどを記憶する。
 RAM914は、揮発性の記憶装置であり、データなどを記憶する。
 通信装置915(送信装置・受信装置)は、コンピュータなどの情報処理装置と通信をする。通信装置915は、CPU911からの指示により、情報処理装置に対してデータを送信し、また、情報処理装置が加圧位置判定装置200に対して送信したデータを受信する。
 ADC916は、圧力センサ150が出力した信号を入力し、CPU911が処理できるデジタルデータに変換する。
 図6は、この実施の形態における加圧位置判定装置200の機能ブロックの構成の一例を示すブロック構成図である。
 加圧位置判定装置200は、ボタン入力部211、ボタン記憶部212、圧力入力部221、圧力記憶部222、最大判定部231、閾値判定部234、位置判定部235、位置出力部236を有する。
 上述したように、これらの機能ブロックは、CPU911がプログラムを実行することにより実現される。なお、これらの機能ブロックの一部または全部を、プログラムにより実現するのではなく、アナログ回路・デジタル回路・集積回路などにより実現する構成としてもよい。
 ボタン入力部211は、通信装置915を用いて、情報処理装置が送信したボタン位置データを受信する。ボタン位置データとは、操作画面表示装置140が表示する操作画面810のどこに利用者が押すことのできるボタンがあるかを表わすデータである。ボタン入力部211は、CPU911を用いて、受信したボタン位置データを出力する。
 ボタン記憶部212は、CPU911を用いて、ボタン入力部211が出力したボタン位置データを入力する。ボタン記憶部212は、RAM914を用いて、入力したボタン位置データを記憶する。
 図7は、この実施の形態におけるボタン表示位置311と検出位置350との関係の一例を示す図である。
 ボタン表示位置311(押下位置)とは、操作画面810においてボタン811を表示することができる標準的な位置のことである。ボタン表示位置311には、ボタン811が表示されてもよいし、表示されなくてもよい。また、ボタン表示位置311に表示するボタン811の形状・大きさ・色などは、任意でよい。
 検出位置350とは、圧力センサ150が操作板110に加えられた圧力を検出する位置のことであり、検出位置支持部120と操作板110との接続位置が、検出位置350である。
 この例において、操作画面810には、6つのボタン表示位置311a~311fがある。操作画面810は、操作板支持部131の軸331を中心として、上下2つに分割され、分割された上下それぞれの部分に、3つずつのボタン表示位置311a~311c,311d~311fがある。3つずつのボタン表示位置311a~311c,311d~311fは、横に並んでいる。
 6つの圧力センサ150a~150fそれぞれに対応する6つの検出位置350a~350fは、それぞれ、6つのボタン表示位置311a~311fに近い位置にあり、いずれも操作画面810より外にある。
 ボタン入力部211が入力するボタン位置データは、6つのボタン表示位置311a~311fのうち、どの位置にボタン811が表示され、どの位置に表示されていないかを表わす。
 図6に戻り、加圧位置判定装置200の機能ブロックの説明を続ける。
 圧力入力部221は、ADC916を用いて、圧力センサ150a~150fが出力した信号を入力し、デジタルデータ(以下「検出圧力データ」と呼ぶ。)に変換する。圧力入力部221は、CPU911を用いて、変換した検出圧力データを出力する。
 圧力記憶部222は、CPU911を用いて、圧力入力部221が出力した検出圧力データを入力する。圧力記憶部222は、RAM914を用いて、入力した検出圧力データを記憶する。
 最大判定部231は、CPU911を用いて、圧力記憶部222が記憶した検出圧力データを入力する。最大判定部231は、CPU911を用いて、入力した検出圧力データに基づいて、最も大きい圧力を検出した圧力センサ150(以下「最大圧力検出センサ」と呼ぶ。)と、その圧力センサ150が検出した圧力(以下「検出最大圧力」と呼ぶ。)とを判定する。最大判定部231は、CPU911を用いて、判定した判定結果を表わすデータを出力する。
 閾値判定部234は、CPU911を用いて、最大判定部231が出力したデータを入力する。閾値判定部234は、CPU911を用いて、入力したデータが表わす判定結果に基づいて、検出最大圧力と、所定の閾値とを比較する。利用者がボタン811を押した場合、検出最大圧力が閾値より大きくなる。閾値判定部234は、CPU911を用いて、比較した比較結果を表わすデータを出力する。
 なお、閾値を複数設けて、閾値判定部234が、検出最大圧力と複数の閾値とを比較することにより、利用者がボタン811を押した場合に、押した力が強いか弱いかを区別する構成としてもよい。
 位置判定部235は、CPU911を用いて、ボタン記憶部212が記憶したボタン位置データと、閾値判定部234が出力したデータとを入力する。位置判定部235は、CPU911を用いて、閾値より大きい圧力を検出した最大圧力検出センサに対応するボタン表示位置に、ボタン811が表示されているか否かを判定する。利用者がボタン811の表示されていない位置を押した場合を無視するためである。最大圧力センサに対応するボタン表示位置にボタン811が表示されている場合、位置判定部235は、CPU911を用いて、最大圧力センサに対応するボタン表示位置を表わすデータを生成し、出力する。
 位置出力部236は、CPU911を用いて、位置判定部235が出力したデータを入力する。位置出力部236は、通信装置915を用いて、入力したデータを、情報処理装置に対して送信する。
 例えば、ボタン表示位置311aに表示されたボタン811を利用者が押した場合、操作板110は、軸331を中心に上に傾き、上側の3つの圧力検出位置350a~350cに対応する圧力センサ150a~150cが圧力を検出する。そのなかでも、特に、ボタン表示位置311aに最も近い検出位置350aに対応する圧力センサ150aが最も強い圧力を検出する。加圧位置判定装置200は、圧力センサ150a~150fが検出した圧力に基づいて、最も強い圧力を検出した圧力センサ150aに対応するボタン表示位置311aに表示されたボタン811が押されたと判定する。
 図8は、この実施の形態における加圧位置判定処理S610の流れの一例を示すフローチャート図である。
 加圧位置判定処理S610において、加圧位置判定装置200は、操作領域内で圧力が加えられた位置を判定する。加圧位置判定処理S610は、ボタン位置入力工程S611、圧力入力工程S612、最大判定工程S613、閾値判定工程S615、位置判定工程S617、位置出力工程S619を有する。
 ボタン位置入力工程S611において、ボタン入力部211は、通信装置915を用いて、ボタン位置データを受信する。ボタン記憶部212は、RAM914を用いて、ボタン入力部211が受信したボタン位置データを記憶する。
 圧力入力工程S612において、圧力入力部221は、ADC916を用いて、圧力センサ150a~150fが検出した圧力を入力する。圧力記憶部222は、RAM914を用いて、圧力入力部221が入力した圧力を表わす検出圧力データを記憶する。
 最大判定工程S613において、最大判定部231は、CPU911を用いて、圧力入力工程S612で圧力記憶部222が記憶した検出圧力データに基づいて、最大圧力検出センサと、検出最大圧力とを判定する。
 閾値判定工程S615において、閾値判定部234は、CPU911を用いて、最大判定工程S613で最大判定部231が判定した検出最大圧力と、所定の閾値とを比較する。
 ボタン811が押されていない場合は、検出最大圧力が閾値以下となる。加圧位置判定装置200は、圧力入力工程S612に戻る。
 ボタン811が押された場合は、検出最大圧力が閾値より大きくなる。加圧位置判定装置200は、位置判定工程S617へ進む。
 位置判定工程S617において、位置判定部235は、CPU911を用いて、ボタン位置入力工程S611でボタン記憶部212が記憶したボタン位置データに基づいて、最大判定工程S613で最大判定部231が判定した最大圧力検出センサに対応するボタン表示位置に、ボタン811が表示されているか否かを判定する。
 圧力を加えられた位置にボタン811が表示されていない場合、加圧位置判定装置200は、圧力入力工程S612に戻る。
 圧力を加えられた位置にボタン811が表示されている場合、加圧位置判定装置200は、位置出力工程S619へ進む。
 位置出力工程S619において、位置判定部235は、CPU911を用いて、最大判定工程S613で最大判定部231が判定した最大圧力検出センサに対応するボタン表示位置を表わすデータを生成する。位置出力部236は、通信装置915を用いて、位置判定部235が生成したデータを送信する。
 この実施の形態における位置入力装置(タッチパネル800)は、操作領域内の任意の位置に圧力が加えられた場合に、圧力が加えられた加圧位置を判定する。
 位置入力装置は、操作板110と、少なくとも2つの圧力検出装置(圧力センサ150)と、加圧位置判定装置200とを有する。
 上記操作板110は、平板状であり、一方の面に上記操作領域を有する。
 上記圧力検出装置は、他の圧力検出装置と異なる圧力検出位置350において上記加圧位置に加えられた圧力により発生する検出位置圧力を検出する。
 上記圧力検出位置350は、上記操作板110上の上記操作領域より外側に位置する。
 上記加圧位置判定装置200は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置を判定する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、圧力検出位置が操作領域より外側に位置するので、操作領域内に圧力を検出する圧力検出装置を配置する必要がない。このため、操作領域の下に操作画面を表示する操作画面表示装置140を配置した場合でも、操作画面の輝度が落ちず、操作画面を見やすくすることができる。また、操作領域が大きくなっても、圧力検出装置の構成を変える必要がないので、位置入力装置の製造コストを抑えることができる。
 この実施の形態における位置入力装置(タッチパネル800)において、上記加圧位置判定装置200は、少なくとも2つの上記圧力検出装置(圧力センサ150)のうち最も大きい検出位置圧力を検出した圧力検出装置(最大圧力検出センサ)を判定し、上記加圧位置が、少なくとも2つの上記圧力検出位置350のうち、判定した圧力検出装置(最大圧力検出センサ)の圧力検出位置350に最も近い位置であると判定する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、複数の圧力検出装置(圧力センサ150)のうち最も大きい圧力を検出した圧力検出装置の圧力検出位置に最も近い位置を加圧位置と判定するので、ボタン811の配置などがあらかじめ決まっている場合、簡易な構成で、どのボタン811が押されたかを判定することができる。
 なお、ボタン表示位置に対応する操作板110の上面に、膨らみあるいは窪みを設けた構成としてもよい。これにより、利用者は、ボタン811の位置を、操作画面810を目で見ることにより認識するだけでなく、膨らみあるいは窪みに指で触れることにより認識することができる。視覚と触覚との融合により、利用者がボタン811の位置を一層認識しやすくなる。
 この実施の形態における位置入力装置(タッチパネル800)は、更に、検出位置支持部120a~120fを有する。
 上記検出位置支持部120a~120fは、上記圧力検出位置350a~350fにおいて上記操作板110を支持する。
 上記圧力検出装置(圧力センサ150a~150f)は、上記検出位置支持部120a~120fを介して上記圧力検出位置350a~350fにおける検出位置圧力を検出する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、検出位置支持部120が操作板110を支持するので、操作板110の下に操作画面表示装置140を置く空間を確保することができるとともに、圧力検出位置350a~350fに発生した圧力を、検出位置支持部120a~120fを介して、圧力検出装置が検出できる。
 この実施の形態における位置入力装置(タッチパネル800)は、更に、操作板支持部131を有する。
 上記操作板支持部131は、上記圧力検出位置350a~350fと異なる位置において上記操作板110を支持する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、操作板支持部131が圧力検出位置350a~350fと異なる位置で操作板110を支持するので、操作板110の可動範囲や、加圧位置から圧力検出位置への力の伝達を制御することができる。
 例えば、操作板支持部として、隣接した検出位置支持部120の間に、検出位置支持部120よりも短い棒状の部材(柱)を設ける構成としてもよい。これにより、圧力センサ150に対応しないボタン表示位置311に圧力が加えられた場合に圧力検出位置に伝達される圧力を減らすことができ、加圧位置の判定の精度を高くすることができる。
 なお、検出位置支持部120a~120fの下に圧力検出装置を配置するのではなく、検出位置支持部120a~120fの途中に圧力検出装置を配置する構成としてもよい。例えば、圧力検出装置を環状に構成し、検出位置支持部を2つに分けて、下側の検出位置支持部は、底板160に固定する。下側の検出位置支持部の上端に雄ネジ、上側の検出位置支持部の下端に雌ネジを設け、雄ネジの先を圧力検出装置の環に通して、二つのネジを螺合させる。これにより、検出位置支持部だけで操作板110を支持することができるので、操作板支持部などの支持構造を、検出位置支持部以外に設ける必要がない。
 この実施の形態における位置入力装置(タッチパネル800)は、更に、領域外保護部(化粧板820)を有する。
 上記領域外保護部は、上記操作板110に対して、上記操作領域を有する面の側に位置し、上記操作板110の上記操作領域以外の部分に圧力が加えられないよう、上記操作板110の上記操作領域以外の部分を覆う。
 この実施の形態における位置入力装置(タッチパネル800)によれば、領域外保護部(化粧板820)が、上記操作板110の上記操作領域以外の部分を覆うので、上記操作板110の上記操作領域以外の部分に圧力が加わらず、利用者が操作領域外を押した場合にボタン811が押されたと誤判定するのを防ぐことができる。
 この実施の形態における位置入力装置(タッチパネル800)は、更に、操作画面表示装置140を有する。
 上記操作板110は、透明である。
 上記操作画面表示装置140は、上記操作板110に対して、上記操作領域を有する面の反対側に位置し、上記操作板110の上記操作領域を通して目視可能な操作画面810を表示する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、圧力検出位置が操作領域より外側に位置するので、操作領域内に圧力を検出する圧力センサを配置する必要がなく、操作画面810の輝度が落ちないので、操作画面810を見やすくすることができる。
 以上説明した位置入力装置(表示操作機)は、表示画面(表示部141)と感圧センサ(圧力センサ150)と透明板(操作板110)とアナログ電圧検出回路(ADコンバータ、コンパレータ等)(ADC916)とを備え、表示画面の表示面側に透明板を配置し、表示画面の周囲に感圧センサを配置し、表示画面上の透明板を押下することにより、感圧センサに圧力を与え、その圧力値をアナログ電圧検出回路で読み取ることにより、押下された位置を検出する。
 以上説明した位置入力装置(表示操作機)は、液晶面の押下位置(ボタン表示位置311)近傍のn箇所に感圧センサを配置し、センサ位置近傍のn箇所の押下位置を検出する。
 以上説明した位置入力装置(表示操作機)は、感圧センサ間に支柱(操作板支持部)をたて、該支柱にて透明板を支持する構成としてもよい。
 以上説明した位置入力装置(表示操作機)は、透明板の上に化粧板820を配置し、化粧板820は透明板と独立して支持され、化粧板820を押下した時に透明板に押圧力がかからないよう構成してもよい。
 以上説明した位置入力装置(表示操作機)は、透明板の押下位置に凸部を設ける構成としてもよい。
 以上説明した位置入力装置(表示操作機)は、透明板の押下位置に凹部を設ける構成としてもよい。
 以上説明した位置入力装置(表示操作機)は、感圧センサが検出した複数の押下力に応じて、制御を変更する構成としてもよい。
 実施の形態2.
 実施の形態2について、図9を用いて説明する。
 なお、実施の形態1と共通する部分については、同一の符号を付し、説明を省略する。
 図9は、この実施の形態における本体100の構造の一例を示す分解斜視図である。
 本体100は、操作画面表示装置140、底板160を有し、操作板110を有さない。
 底板160の上には、6つの圧力センサ150a~150f、4つの弾性体133が設けられている。
 弾性体133は、操作画面表示装置140の表示部141を、底板160と平行に保とうとする。
 圧力センサ150a~150fは、操作画面表示装置140の裏側に直接当接し、利用者が操作画面表示装置140の表示部141を押すことにより発生する圧力を検出する。
 この実施の形態では、操作板110を設けず、その代わり、操作画面表示装置140の表示部141を操作領域とする。利用者が表示部141に表示されたボタン811を押すと、操作画面表示装置140を介して、圧力センサ150a~150fに圧力が加わり、圧力センサ150a~150fが圧力を検出する。
 このように、操作画面表示装置140の表示部141を操作板として利用し、利用者が表示部141に直接触れて、ボタン811を押す構成としてもよい。
 この実施の形態における位置入力装置(タッチパネル800)において、上記操作板(操作画面表示装置140)は、上記操作領域に操作画面810を表示する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、操作板(操作画面表示装置140)が操作領域に操作画面810を表示するので、タッチパネル800の部品点数を減らすことができ、位置入力装置の製造コストを抑えることができる。
 以上説明した位置入力装置(表示操作機)は、弾性体133で保持した表示画面(操作画面表示装置140)の裏面の4隅の位置に感圧センサ(圧力センサ150)を配置し、感圧センサを配置した箇所で液晶(操作画面表示装置140)を固定し、表示画面(表示部141)を押下することにより、押下圧力を検出し、押下位置を推定する構成としてもよい。
 以上説明した位置入力装置(表示操作機)は、弾性体133で保持した表示画面(操作画面表示装置140)の裏面の4辺の位置に感圧センサ(圧力センサ150)を配置し、感圧センサを配置した箇所で液晶(操作画面表示装置140)を固定し、表示画面(表示部141)を押下することにより、押下圧力を検出し、押下位置を推定する構成としてもよい。
 以上説明した位置入力装置(表示操作機)は、感圧センサ(圧力センサ150)は環状(円環だけではなく、四角の環も含まれる)を形成しており、液晶を固定するための柱の部分に感圧センサを配置し、環状のセンサの中央の空洞部分に固定用の金具(ねじ)を通して、液晶を固定する構成としてもよい。
 実施の形態3.
 実施の形態3について、図10~図13を用いて説明する。
 なお、実施の形態1及び実施の形態2と共通する部分については、同一の符号を付し、説明を省略する。
 図10は、この実施の形態における圧力センサ150を底板160に固定する構成の一例を示す一部拡大側面視破断図である。
 底板160は、圧力センサ150の固定位置の真下に貫通するネジ穴を有する。
 圧力センサ150は、ゴム172などの柔らかい材料により底板160に仮止めされ、ネジ穴を通して底板160の裏側から貫通する調整ネジ171などにより、取り付け高さを調整できる。
 調整ネジ171(検出圧力調整装置)を調整して、圧力センサ150の取り付け高さを高くすると、圧力センサ150が検出する圧力が大きくなる。逆に、調整ネジ171を調整して、圧力センサ150の取り付け高さを低くすると、圧力センサ150が検出する圧力が小さくなる。
 検出位置支持部120の長さのわずかな違い、タッチパネル800の設置角度、圧力センサ150の感度の違いなどのより、同じ圧力を加えても、圧力センサ150によって検出する圧力が異なる場合がある。これが等しくなるよう、調整ネジ171を調整することにより、誤検出を減らす。
 図11は、この実施の形態における加圧位置判定装置200の機能ブロックの構成の一例を示すブロック構成図である。
 加圧位置判定装置200は、実施の形態1で説明した構成に加えて、モード入力部241、画面生成部242、画面出力部243を有する。
 モード入力部241は、CPU911を用いて、タッチパネル800のモードを入力する。タッチパネル800のモードには、利用者の操作を入力する「操作モード」と、圧力センサ150の調整を行う「調整モード」とがある。例えば、モード入力部241は、通信装置915を用いて、情報処理装置からモードを表わすデータを受信することにより、モードを入力する。あるいは、モード入力部241は、タッチパネル800に設けられたタクトスイッチなど機械的な切替スイッチの状態を読み取ることにより、モードを入力する。モード入力部241は、CPU911を用いて、入力したモードを表わすデータを出力する。
 画面生成部242は、CPU911を用いて、モード入力部241が出力したデータを入力する。画面生成部242は、入力したデータに基づいて、タッチパネル800のモードが調整モードである場合に、操作画面表示装置140が表示する調整画面を生成する。画面生成部242は、CPU911を用いて、生成した調整画面を表わすデータを出力する。
 画面出力部243は、CPU911を用いて、画面生成部242が出力したデータを入力する。画面出力部243は、CPU911を用いて、入力したデータが表わす操作画面を表わす信号を生成し、操作画面表示装置140に対して出力する。
 操作画面表示装置140は、タッチパネル800のモードが操作モードの場合、情報処理装置から受信した信号に基づいて、操作画面810を表示する。タッチパネル800のモードが調整モードの場合、画面出力部243が出力した信号を入力し、調整画面を表示する。
 図12は、この実施の形態における画面生成部242が生成する調整画面815の一例を示す図である。
 調整画面815において、ボタン表示位置311a~311fには、ボタン811a~811fがある。ボタン811a~811fのなかには、対応する圧力センサ150が検出した圧力の値が表示される。また、ボタン811a~811fのいずれかが押されていると、加圧位置判定装置200が判定した場合、押されていると判定したボタン811が分かるよう、そのボタン811の色、形状、大きさなどを変化させる。
 図13は、この実施の形態におけるセンサ調整処理S620の流れの一例を示すフローチャート図である。
 センサ調整処理S620は、モード入力部241が入力したモードが調整モードである場合に、実行される。センサ調整処理S620において、加圧位置判定装置200は、管理者が圧力センサ150を調整するのを助けるため、操作画面表示装置140が調整画面815を表示する。センサ調整処理S620は、画面生成工程S623、圧力入力工程S624、最大判定工程S625、閾値判定工程S626を有する。
 画面生成工程S623において、画面生成部242は、CPU911を用いて、圧力記憶部222が記憶した検出圧力データや位置判定部235が出力したデータが表わす判定結果に基づいて、調整画面815を生成する。操作画面表示装置140は、画面生成部242が生成した調整画面815を表示する。
 圧力入力工程S624において、圧力入力部221は、ADC916を用いて、圧力センサ150a~150fが検出した圧力を入力する。圧力記憶部222は、RAM914を用いて、圧力入力部221が入力した圧力を表わす検出圧力データを記憶する。
 最大判定工程S625において、最大判定部231は、CPU911を用いて、圧力入力工程S624で圧力記憶部222が記憶した検出圧力データに基づいて、最大圧力検出センサと、検出最大圧力とを判定する。
 閾値判定工程S626において、閾値判定部234は、CPU911を用いて、最大判定工程S625で最大判定部231が判定した検出最大圧力と、所定の閾値とを比較して、検出最大圧力が閾値より大きいか否かを判定する。
 その後、画面生成工程S623に戻る。
 管理者は、タッチパネル800を調整モードに設定して、調整画面815を表示させる。管理者は、調整画面815を見ながら、圧力センサ150が検出する圧力が適正な値になるよう、調整ネジ171を調整する。例えば、管理者は、操作板110を押していない状態で、圧力センサ150が検出する圧力が同じになるよう、調整ネジ171を調整する。次に、管理者は、ボタン811を押してみて、所定の強さでボタン811を押したときに加圧位置判定装置200がそのボタン811が押されたと判定するかを確認する。なお、管理者は、確認のためボタン811を押すとき、指で押してみてもよいが、例えば所定の重さの重りをボタン811の上(の操作板110)に乗せるなどして、ボタン811を押す圧力が一定となるようにすることが望ましい。
 この実施の形態における位置入力装置(タッチパネル800)は、更に、検出圧力調整装置(調整ネジ171)を有する。
 上記検出圧力調整装置は、上記圧力検出装置(圧力センサ150)が検出する検出位置圧力を調整できる。
 この実施の形態における位置入力装置(タッチパネル800)によれば、検出圧力調整装置(調整ネジ171)により、圧力センサ150が検出する圧力を調整することができるので、圧力センサ150が検出する圧力を適正な値に調整することにより、誤判定を防ぐことができる。
 以上説明した位置入力装置(表示操作機)は、感圧センサ(圧力センサ150)にかかる初期圧力を変化させるための調節ネジ(調整ネジ171)を、裏面の各感圧センサの配置箇所に配置する。
 実施の形態4.
 実施の形態4について、図14~図16を用いて説明する。
 なお、実施の形態1乃至実施の形態3と共通する部分については、同一の符号を付し、説明を省略する。
 実施の形態3では、検出圧力調整装置(調整ネジ171)を用いて、ハードウェア的に、圧力検出装置(圧力センサ150)が検出する圧力を調整している。この実施の形態では、圧力センサ150が検出する圧力を調整するのではなく、圧力入力部221が入力した検出圧力データに補正値を加えることにより、ソフトウェア的に調整を行う。
 図14は、この実施の形態における加圧位置判定装置200の機能ブロックの構成の一例を示すブロック構成図である。
 加圧位置判定装置200は、実施の形態3で説明した構成に加えて、更に、補正算出部251、補正記憶部252、圧力補正部253を有する。
 補正算出部251は、タッチパネル800のモードが調整モードの場合に、CPU911を用いて、圧力記憶部222が記憶した検出圧力データに基づいて、圧力補正値を算出する。圧力補正値とは、圧力センサ150が検出した圧力に加算される補正値である。補正算出部251は、圧力センサ150a~150fごとに圧力補正値を算出する。補正算出部251は、CPU911を用いて、算出した圧力補正値を表わすデータ(以下「補正値データ」と呼ぶ。)を出力する。
 補正記憶部252は、CPU911を用いて、補正算出部251が出力した補正値データを入力する。補正記憶部252は、ROM913を用いて、入力した補正値データを記憶する。補正記憶部252が補正値データを不揮発性メモリに記憶することにより、タッチパネル800の電源を切って再投入した場合でも、補正値データが保持される。
 圧力補正部253(検出圧力補正装置)は、CPU911を用いて、圧力入力部221が出力した検出圧力データと、補正記憶部252が記憶した補正値データとを入力する。圧力補正部253は、CPU911を用いて、入力した検出圧力データが表わす圧力と、補正値データが表わす補正値との和を算出する。圧力補正部253は、CPU911を用いて、算出した和を表わすデータ(以下「補正圧力データ」と呼ぶ。)を出力する。
 圧力記憶部222は、CPU911を用いて、圧力入力部221が出力した検出圧力データに代えて、圧力補正部253が出力した補正圧力データを入力し、RAM914を用いて、入力した補正圧力データを、検出圧力データとして記憶する。
 このように、圧力センサ150が検出した圧力に、補正値を加えたものを、圧力記憶部222が記憶することにより、ハードウェア的に、圧力センサ150が検出する圧力を調整するのと同じ効果を得ることができる。検出圧力調整装置(調整ネジ171)を設ける場合と比較して、タッチパネル800の構造が簡易になり、部品数が少なくて済むので、タッチパネル800の製造コストを抑えることができる。
 図15は、この実施の形態における画面生成部242が生成する調整画面815の一例を示す図である。
 画面生成部242は、例えば、ボタン表示位置を一つずつ選択し、選択したボタン表示位置にボタン811を表示する調整画面815を生成する。また、調整画面815には、秒読み表示816があり、時間の経過にしたがってカウントダウンする。秒読み表示816が「0」になったときに、ボタン811が押されていた場合、補正算出部251が、そのボタン表示位置に対応する圧力センサ150の補正値を算出する。
 なお、調整画面815には、秒読み表示816が表示されない構成であってもよい。
 図16は、この実施の形態におけるセンサ調整処理S620の流れの一例を示すフローチャート図である。
 センサ調整処理S620は、実施の形態3で説明した工程に加えて、位置選択工程S621、秒読み設定工程S622、秒読み判定工程S627、加圧判定工程S628、補正算出工程S629、終了判定工程S630を有する。
 位置選択工程S621において、補正算出部251は、CPU911を用いて、6つの圧力センサ150a~150fのなかから圧力センサ150を一つずつ順に選択する。
 秒読み設定工程S622において、補正算出部251は、CPU911を用いて、補正までの残り時間を所定の時間(例えば5秒)に設定する。
 画面生成工程S623において、画面生成部242は、CPU911を用いて、位置選択工程S621で補正算出部251が選択した圧力センサ150に対応するボタン表示位置にボタン811を表示し、秒読み設定工程S622で設定した残り時間を秒読み表示816に表示した調整画面815を生成する。操作画面表示装置140は、画面生成部242が生成した調整画面815を表示する。
 秒読み判定工程S627において、補正算出部251は、CPU911を用いて、補正までの残り時間が0になったか否かを判定する。残り時間が0より大きい場合は、画面生成工程S623に戻る。残り時間が0以下の場合は、加圧判定工程S628へ進む。
 加圧判定工程S628において、補正算出部251は、CPU911を用いて、位置選択工程S621で選択した圧力センサ150が検出した圧力を、所定の第二の閾値と比較する。第二の閾値は、閾値判定工程S615,S626でボタンが押されたか否かを判定するため閾値判定部234が用いる閾値よりも小さい値である。圧力センサ150が検出する圧力が小さく、補正前の値が、閾値判定部234の閾値より小さい可能性があるからである。
 圧力センサ150が検出した圧力が、第二の閾値より大きい場合、加圧ありとして、補正算出工程S629へ進む。
 圧力センサ150が検出した圧力が第二の閾値以下の場合、加圧なしとして、終了判定工程S630へ進む。
 補正算出工程S629において、補正算出部251は、CPU911を用いて、所定の基準圧力から、位置選択工程S621で選択した圧力センサ150が検出した圧力を差し引いた差を算出し、その圧力センサ150についての圧力補正値とする。補正記憶部252は、ROM913を用いて、補正算出部251が算出した圧力補正値を記憶する。
 その後、補正算出部251は、位置選択工程S621に戻り、次の圧力センサ150を選択する。なお、最後の圧力センサ150まで選択した場合、補正算出部251は、最初の圧力センサ150に戻って選択する。
 終了判定工程S630において、補正算出部251は、CPU911を用いて、センサ調整処理S620を終了するか否かを判定する。例えば、補正算出部251は、過去6回の加圧判定工程S628において、すべて加圧なしと判定した場合に、センサ調整処理S620を終了すると判定する。センサ調整処理S620を終了しないと判定した場合は、位置選択工程S621に戻り、次の圧力センサ150を選択する。
 この実施の形態における位置入力装置(タッチパネル800)は、更に、検出圧力補正装置(圧力補正部253)とを有する。
 上記検出圧力補正装置は、上記圧力検出装置(圧力センサ150)が検出した検出位置圧力を補正する。
 上記加圧位置判定装置200は、上記検出圧力補正装置が補正した検出位置圧力に基づいて、上記加圧位置を判定する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、検出圧力補正装置(圧力補正部253)が補正した検出位置圧力に基づいて、加圧位置判定装置200が加圧位置を判定するので、圧力センサ150が検出する圧力を適切に補正することにより、誤判定を防ぐことができる。
 なお、所定の残り時間が経過したときに、圧力入力部221が入力した圧力に基づいて補正算出部251が補正値を算出するのではなく、タッチパネル800に圧力補正のタイミングを入力する機械的な補正スイッチを設け、補正スイッチを押したときに、圧力入力部221が入力した圧力に基づいて補正算出部251が補正値を算出する構成としてもよい。その場合、管理者は、調整画面815に表示されたボタン811を押しながら、補正スイッチを押す。
 あるいは、圧力センサ150が検出する圧力が所定の閾値より大きい値で安定したとき(例えば1秒間の変動幅が1%以内となるなど)に、圧力入力部221が入力した圧力に基づいて補正算出部251が補正値を算出する構成としてもよい。
 以上説明した位置入力装置(表示操作機)は、感圧力設定モード(調整モード)を有し、感圧センサ(圧力センサ150)で検出するスイッチ以外の他のスイッチ(切替スイッチ)により、設定モードに移行し、表示画面(表示部141)に表示された箇所を一定の圧力で押下しながら、他のスイッチ(補正スイッチ)を押下することにより、押下時の感度を記憶する構成としてもよい。
 以上説明した位置入力装置(表示操作機)は、感圧力設定モードを有し、感圧センサで検出するスイッチ以外の他のスイッチにより、該設定モードに移行し、表示画面に表示された箇所を一定の圧力で押下し、一定時間経過後に、押下時の感度を記憶する構成としてもよい。
 以上説明した位置入力装置(表示操作機)は、感圧力設定モードを有し、感圧センサで検出するスイッチ以外の他のスイッチにより、該設定モードに移行した後、押下を指示する箇所(ボタン811)を表示画面に表示し、押下部以外の液晶表示領域に設定時に必要な情報(設定中または設定完了)(秒読み表示816)を意図した表示を出力する構成としてもよい。
 実施の形態5.
 実施の形態5について、図17~図21を用いて説明する。
 なお、実施の形態1乃至実施の形態4と共通する部分については、同一の符号を付し、説明を省略する。
 この実施の形態では、操作画面810にボタン811を設ける位置を定めず、任意の位置にボタン811を設けることができる構成について説明する。
 図17は、この実施の形態における本体100の構造の一例を示す分解斜視図である。
 本体100は、4つの検出位置支持部120a~120d、4つの圧力センサ150a~150dを有する。
 検出位置支持部120a~120dは、外縁部112の4つの角それぞれに設けられている。
 圧力センサ150a~150dは、検出位置支持部120a~120dに当接する位置に設けられていて、検出位置支持部120a~120dを介して、操作板110に加えられた圧力により発生した検出位置圧力を検出する。
 検出位置支持部120a~120dと操作板110とが接する位置が圧力検出位置であり、4つの圧力検出位置により形成される長方形のなかに、操作領域が含まれる。
 利用者が操作板110に圧力を加えると、その力は、4つの検出位置支持部120a~120dに分散して、圧力センサ150に伝達される。
 図18は、この実施の形態における加圧位置判定装置200の機能ブロックの構成の一例を示すブロック構成図である。
 加圧位置判定装置200は、圧力入力部221、圧力記憶部222、合計算出部232、比率算出部233、閾値判定部234、位置判定部235、位置出力部236を有する。
 合計算出部232は、CPU911を用いて、圧力記憶部222が記憶した検出圧力データを入力する。合計算出部232は、CPU911を用いて、入力した検出圧力データに基づいて、4つの圧力センサ150a~150dが検出した圧力の合計を算出する。合計算出部232が、CPU911を用いて、算出した合計を表わすデータを出力する。
 比率算出部233は、CPU911を用いて、圧力記憶部222が記憶した検出圧力データと、合計算出部232が出力したデータとを入力する。比率算出部233は、CPU911を用いて、入力したデータに基づいて、4つの圧力センサ150a~150dそれぞれが検出した圧力を、4つの圧力の合計で割った商を算出する。比率算出部233は、CPU911を用いて、算出した商(以下「圧力分散比率」と呼ぶ。)を表わすデータを出力する。
 閾値判定部234は、CPU911を用いて、合計算出部232が出力したデータを入力する。閾値判定部234は、CPU911を用いて、入力したデータに基づいて、4つの圧力の合計を、所定の閾値と比較する。4つの圧力センサ150が検出した圧力の合計は、操作板110に加えられた圧力に比例するので、利用者がボタン811を押した場合は、4つの圧力の合計が閾値より大きくなる。閾値判定部234は、CPU911を用いて、比較した比較結果を表わすデータを出力する。
 位置判定部235は、CPU911を用いて、閾値判定部234が出力したデータと、比率算出部233が出力したデータとを入力する。位置判定部235は、入力したデータに基づいて、4つの圧力の合計が閾値より大きい場合に、比率算出部233が算出した圧力分散比率から、加圧位置を算出する。位置判定部235は、CPU911を用いて、算出した加圧位置を表わすデータを出力する。
 図19は、この実施の形態における加圧位置判定処理S610の流れの一例を示すフローチャート図である。
 加圧位置判定処理S610は、圧力入力工程S612、合計算出工程S614、閾値判定工程S615、比率算出工程S616、位置判定工程S618、位置出力工程S619を有する。
 合計算出工程S614において、合計算出部232は、CPU911を用いて、圧力入力工程S612で圧力記憶部222が記憶した検出圧力データに基づいて、圧力の合計を算出する。
 閾値判定工程S615において、閾値判定部234は、CPU911を用いて、合計算出工程S614で算出した圧力の合計と、所定の閾値とを比較する。
 ボタン811が押されていない場合は、圧力の合計が閾値以下となる。加圧位置判定装置200は、圧力入力工程S612に戻る。
 ボタン811が押されている場合は、圧力の合計が閾値より大きくなる。加圧位置判定装置200は、比率算出工程S616へ進む。
 比率算出工程S616において、比率算出部233は、CPU911を用いて、圧力入力工程S612で2圧力記憶部222が記憶した検出圧力データと、合計算出工程S614で閾値判定部234が算出した圧力の合計とに基づいて、圧力分散比率を算出する。
 位置判定工程S618において、位置判定部235は、CPU911を用いて、比率算出工程S616が算出した圧力分散比率に基づいて、加圧位置を算出する。
 次に、位置判定部235が加圧位置を算出する方式について説明する。
 図20は、圧力検出位置が2つの場合における力の釣り合いを示す図である。
 P及びPは、圧力検出位置を示す。圧力検出位置Pの座標(x,y)及び圧力検出位置Pの座標(x,y)は、既知である。Pは、加圧位置を示す。加圧位置Pの座標(x,y)は、2つの圧力検出位置P及びPを結ぶ線分上にあること以外、未知である。Fは、加圧位置Pに加えられた力を示す。Fは、圧力検出位置Pに発生する応力を示す。Fは、圧力検出位置Pに発生する応力を示す。lは、加圧位置Pと圧力検出位置Pとの間の距離を示す。lは、加圧位置Pと圧力検出位置Pとの間の距離を示す。
 加圧位置Pの座標(x,y)と、距離l及びlとの間には、次の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 力Fと応力F及びFとが釣り合っていることから、次の式が成り立つ。
Figure JPOXMLDOC01-appb-M000002
 したがって、加圧位置Pの座標(x,y)は、次の式により求められる。
Figure JPOXMLDOC01-appb-M000003
 図21は、圧力検出位置が3つの場合における力の釣り合いを示す図である。
 Pは、第三の圧力検出位置を示す。圧力検出位置Pの座標(x,y)は、既知である。加圧位置Pの座標(x,y)は、3つの圧力検出位置P及びP及びPを頂点とする三角形のなかに位置すること以外、未知である。P’は、加圧位置Pと圧力検出位置Pとを通る直線と、2つの圧力検出位置P及びPを結ぶ線分との交点を示す。交点P’の座標(x’,y’)は、未知である。Fは、圧力検出位置Pに発生する応力を示す。F’は、2つの応力F及びFの合成を示す。l’は、加圧位置Pと交点P’との間の距離を示す。lは、圧力検出位置Pと交点P’との間の距離を示す。lは、圧力検出位置Pと交点P’との間の距離を示す。
 力Fと応力F及び合成力F’との釣り合いから、次の式が導かれる。
Figure JPOXMLDOC01-appb-M000004
 また、応力F及びFを合成した力がF’であることから、次の式が成り立つ。
Figure JPOXMLDOC01-appb-M000005
 したがって、加圧位置Pの座標(x,y)は、次の式により求められる。
Figure JPOXMLDOC01-appb-M000006
 同様に、n個の圧力検出位置があり、i番目(1≦i≦n)の圧力検出位置Pの座標を(x,y)、圧力検出位置Pに発生する応力をFとすると、加圧位置Pの座標(x,y)は、次の式により求められる。
Figure JPOXMLDOC01-appb-M000007
 位置判定部235は、この計算式を計算することにより、加圧位置を算出する。
 例えば、位置判定部235は、ROM913を用いて、あらかじめ、それぞれの圧力検出位置の座標(x,y)を記憶しておく。位置判定部235は、CPU911を用いて、比率算出部233がそれぞれの圧力センサ150について算出した圧力分散比率(上の式における「F/F」に相当)を、それぞれの圧力センサ150に対応する圧力検出位置のx座標に乗じた積を算出し、算出した積を合計した総和を算出することにより、加圧位置のx座標を算出する。同様に、位置判定部235は、CPU911を用いて、比率算出部233がそれぞれの圧力センサ150について圧力分散比率を、それぞれの圧力センサ150に対応する圧力検出位置のy座標に乗じた積を算出し、算出した積を合計した総和を算出することにより、加圧位置のy座標を算出する。
 このように、操作領域が平面である場合、操作領域内の加圧位置を判定するには、圧力検出位置が3つ以上あり、圧力検出位置を頂点とする多角形内に操作領域が含まれるような配置とすればよい。なお、操作領域は通常長方形であるから、圧力検出位置が4つある構成とするのが効率がよく、望ましい。
 この実施の形態における位置入力装置(タッチパネル800)は、少なくとも3つの圧力検出装置(圧力センサ150)を有する。
 上記圧力検出装置の圧力検出位置は、上記操作領域の少なくとも一部を取り囲む多角形を形成する。
 上記加圧位置判定装置200は、少なくとも3つの上記圧力検出装置が検出した少なくとも3つの検出位置圧力の比(圧力分散比率)に基づいて、上記加圧位置を判定する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、ボタン811の位置をあらかじめ定めておく必要がなく、少ない数の圧力検出装置で加圧位置を判定することができるので、位置入力装置の製造コストを抑えることができる。
 以上説明した位置入力装置(表示操作機)は、透明板(操作板110)の一辺の両端と向かい合う辺の中央に配置した3箇所の感圧センサ(圧力センサ150)で、3カ所を結ぶ三角形の内側に表示画面(表示部141)を配置し、表示画面上を押下することにより、表示画面上の押下箇所を検出する構成としてもよい。
 以上説明した位置入力装置(表示操作機)は、透明板の4隅に配置した4箇所の感圧センサで、押下箇所を検出する構成としてもよい。
 実施の形態6.
 実施の形態6について、図22~図27を用いて説明する。
 なお、実施の形態1乃至実施の形態5と共通する部分については、同一の符号を付し、説明を省略する。
 図22は、この実施の形態におけるタッチパネル800の外観の一例を示す全体斜視図である。
 タッチパネル800は、実施の形態1乃至実施の形態5で説明した構成に加えて、更に、6つの操作スイッチ180a~180fを有する。
 操作スイッチ180a~180fは、操作画面810の外側に位置する。操作スイッチ180a~180fのいずれかを利用者が押すと、タッチパネル800は、利用者が押した操作スイッチ180a~180fを判定し、判定した判定結果を表わすデータを、情報処理装置に対して送信する。
 タッチパネル800は、利用者が操作スイッチ180a~180fを押した場合と、操作画面810内に表示されたボタン811を押した場合とを判別する。情報処理装置は、操作スイッチ180a~180fに、操作画面810内の対応する位置に表示されたボタン811と同じ機能を割り当ててもよいし、操作画面810内に表示されたボタン811とは異なる機能を割り当ててもよい。
 図23は、この実施の形態におけるタッチパネル800の構造の一例を示す分解斜視図である。
 操作スイッチ180a~180fは、本体100の一部である。操作スイッチ180a~180fは、実施の形態1乃至実施の形態5で説明した検出位置支持部120a~120fとしての役割を兼ね備えている。すなわち、操作スイッチ180a~180fは、操作板110を支持し、利用者が操作板110を押した圧力を圧力センサ150a~150fに伝達する。なお、操作スイッチ180a~180fと、検出位置支持部120a~120fとを、別部品として構成してもよい。
 化粧板820には、操作スイッチ180a~180fに対応する位置に、貫通穴822a~822fを有する。操作スイッチ180a~180fの上部が貫通穴822a~822fを通って化粧板820の上側に出ることにより、利用者が操作スイッチ180a~180fを押すことができる。
 図24は、この実施の形態における本体100の構造の一例を示す分解斜視図である。
 操作板110は、6つの舌部113を有する。舌部113は、操作板110の圧力検出位置に相当する位置に設けられている。
 操作スイッチ180a~180fは、略直方体状であり、舌支持部121を有する。舌支持部121は、操作スイッチ180a~180fの中ほどに横向きに設けられた貫通穴である。操作板110の舌部113が舌支持部121に挿入されることにより、操作スイッチ180a~180fは、操作板110を支持するとともに、利用者が操作板110を押した圧力を圧力センサ150a~150fに伝達する。
 図25は、この実施の形態におけるタッチパネル800の動作の一例を示す模式図である。
 利用者が操作板110を押した場合(以下「場合A」と呼ぶ。)、圧力は、舌部113・操作スイッチ180を介して、圧力センサ150に伝達する。
 利用者が操作スイッチ180を押した場合(以下「場合B」と呼ぶ。)、圧力は、操作スイッチ180を介して、圧力センサ150に伝達する。
 図26は、この実施の形態における圧力センサ150a~150fが検出する検出位置圧力の例を示すグラフ図である。
 グラフ701は場合A(操作板110のうち操作スイッチ180dに近い位置を押した場合)、グラフ702は場合B(操作スイッチ180dを押した場合)を表わす。横軸は、圧力センサ150a~150fを表わす。縦軸は、各圧力センサ150が検出した検出位置圧力(無操作時に各圧力センサ150が検出する検出位置圧力を0とした差分)を表わす。縦軸の単位は、例えば重量グラム毎平方ミリメートル(gf/mm)である。
 Pは、押下判定閾値を表わす。押下判定閾値とは、利用者が操作板110または操作スイッチ180を押したか否かを判定するための閾値である。Pは、非押下判定閾値を表わす。非押下判定閾値とは、利用者が操作板110を押したか操作スイッチ180を押したかを判定するための閾値である。
 利用者が操作板110(操作スイッチ180dに近い位置)を押した場合(グラフ701)、操作板110全体が手前に傾き、圧力センサ150d~150fが検出する検出位置圧力は大きくなり、逆に圧力センサ150a~150cが検出する検出位置圧力は小さくなる。圧力センサ150d~150fのなかでは、利用者が押した位置に最も近い圧力センサ150dが検出する検出位置圧力が最も大きくなる。その結果、圧力センサ150dが検出する検出位置圧力だけが押下判定閾値Pを超え、他の少なくとも1つの圧力センサ(この例では圧力センサ150e)が検出する検出位置圧力が非押下判定閾値を超える。
 利用者が操作スイッチ180dを押した場合(グラフ702)、圧力センサ150dだけに圧力が伝わり、圧力センサ150dが検出する検出位置圧力だけが大きくなる。操作スイッチ180dが押し下げられたことにより、操作板110の手前側半分を、3つの操作スイッチ180d~180fで支持していたのが、2つの操作スイッチ180e,180fだけで支持することになるので、圧力センサ150e,150fが検出する検出位置圧力も若干大きくなるが、その差は小さい。その結果、圧力センサ150dが検出する検出位置圧力だけが押下判定閾値Pを超え、他の圧力センサが検出する検出位置圧力は、非押下判定閾値よりも小さい。
 図27は、この実施の形態における押下判定処理S640の流れの一例を示すフローチャート図である。
 押下判定処理S640において、加圧位置判定装置200は、操作板110や操作スイッチ180が押下されたか否かを判定する。押下判定処理S640は、押下閾値判定工程S641、非押下閾値判定工程S642を有する。
 押下閾値判定工程S641において、閾値判定部234は、CPU911を用いて、複数の圧力センサ150が検出した検出位置圧力に基づいて、押下判定閾値Pを超える検出位置圧力を検出した圧力センサ150の数を算出する。
 押下判定閾値Pを超える検出位置圧力を検出した圧力センサ150の数が1以上である場合、非押下閾値判定工程S642へ進む。
 押下判定閾値Pを超える検出位置圧力を検出した圧力センサ150がない場合、位置判定部235は、CPU911を用いて、操作板110も操作スイッチ180も押下されていないと判定し、押下判定処理S640を終了する。
 非押下閾値判定工程S642において、閾値判定部234は、CPU911を用いて、複数の圧力センサ150が検出した検出位置圧力に基づいて、非押下判定閾値Pを超える検出位置圧力を検出した圧力センサ150の数を算出する。
 非押下判定閾値Pを超える検出位置圧力を検出した圧力センサ150の数が1つだけである場合、位置判定部235は、CPU911を用いて、非押下判定閾値Pを超える検出位置圧力を検出した圧力センサ150に対応する操作スイッチ180が押下されたと判定し、押下判定処理S640を終了する。
 非押下判定閾値Pを超える検出位置圧力を検出した圧力センサ150の数が2以上である場合、加圧位置判定装置200は、CPU911を用いて、操作板110が押下されたと判定し、押下判定処理S640を終了する。その後、加圧位置判定装置200は、加圧位置判定処理S610を実行して、操作板110のうちどこが押下されたかを判定する。
 このように、操作板110に圧力が加えられた場合にその位置を検出するために設けられた圧力センサ150が、操作スイッチ180が押下された場合にも圧力を検出するよう構成したことにより、操作スイッチ180が押下されたことを検出するためのセンサ(例えばタクトスイッチなど)を別途設ける必要がないので、タッチパネル800の部品数を減らすことができる。これにより、タッチパネル800を小型化し、製造コストを抑えることができる。
 なお、非押下判定閾値Pは、あらかじめ定められた値であってもよいし、最大判定部231が算出した検出最大圧力に基づいて、閾値判定部234が算出した値であってよい。
 例えば、検出最大圧力と非押下判定閾値Pとの差(以下「圧力差閾値ΔP」と呼ぶ。)として、0より大きい値をあらかじめ定めておき、閾値判定部234は、CPU911を用いて、最大判定部231が算出した検出最大圧力から圧力差閾値ΔPを差し引いて、非押下判定閾値Pを算出する。
 あるいは、検出最大圧力と非押下判定閾値Pとの比(以下「圧力比閾値α」と呼ぶ。)として、0超1未満の値をあらかじめ定めておき、閾値判定部234は、CPU911を用いて、最大判定部231が算出した検出最大圧力に圧力比閾値αを乗じて、非押下判定閾値Pを算出する。
 なお、閾値判定部234は、非押下判定閾値Pを算出して検出位置圧力と比較する代わりに、CPU911を用いて、検出最大圧力と検出位置圧力との差もしくは比を算出して、圧力差閾値ΔPもしくは圧力比閾値αと比較する構成であってもよい。
 この実施の形態における位置入力装置(タッチパネル800)は、更に、操作スイッチ180a~180fを有する。
 上記操作スイッチ180a~180fは、上記圧力検出装置(圧力センサ150a~150f)のいずれかに対応し、押下することにより、対応する圧力検出装置に検出位置圧力が加わる。
 上記加圧位置判定装置200は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記操作スイッチ180a~180fが押下されたか否かを判定する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、操作スイッチ180a~180fを押下することにより圧力検出装置に検出位置圧力が加わり、操作スイッチ180a~180fが押下されたか否かを判定するので、操作スイッチ180a~180fの押下を検出するためのセンサを別途設ける必要がなく、位置入力装置の部品点数を減らし、製造コストを削減し、小型化を図ることができる。
 この実施の形態における位置入力装置(タッチパネル800)において、上記加圧位置判定装置200は、上記操作スイッチ180a~180fに対応する圧力検出装置(圧力センサ150a~150f)が所定の押下判定閾値Pより大きい検出位置圧力を検出した場合に、上記操作スイッチ180a~180fに対応する圧力検出装置が検出した検出位置圧力を押下候補圧力とし、他の圧力検出装置が検出した検出位置圧力を非押下候補圧力とし、上記非押下候補圧力が所定の非押下判定閾値Pより小さい場合および上記押下候補圧力に対する上記非押下候補圧力の比が所定の圧力比閾値αより小さい場合および上記押下候補圧力から上記非押下候補圧力を差し引いた差が所定の圧力差閾値ΔPより大きい場合の3つの場合のうち少なくともいずれか1つの場合に、上記操作スイッチが押下されたと判定する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、操作スイッチ180a~180fが押下された場合と、操作板110が押下された場合とを容易に判別することができる。
 以上説明した位置入力装置において、上記圧力検出位置は、上記操作板110上の上記操作領域より外側に位置し、また圧力検出装置(圧力センサ150a~150f)上に操作スイッチ180a~180fを形成し、上記加圧位置判定装置200は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置と操作スイッチ180a~180fの押下を判定する。
 操作スイッチ180a~180fは、操作板110の任意の位置を押下したときに圧力を検出する圧力センサ150a~150fの上に配置されており、操作スイッチ180a~180fを押下すると、その直下にある圧力センサ150a~150fが、押圧力を検出する。この圧力センサ150a~150fは、操作スイッチ180a~180f押下時と操作板110押下時の両方を検出するため、これらの押下の分離が必要である。
 圧力センサ150a~150fの位置に対応する操作画面表示装置140のボタン811に一定以上の押下圧力を加えると、押下箇所近傍以外にある他の圧力センサ150a~150fにも圧力が伝わりやすい。
 これに対して、操作スイッチ180a~180f押下時は、圧力センサ150a~150fの直上が押下されるため、他の圧力センサ150a~150fには押圧力が伝わりにくいという特性が得られる。
 したがって、押圧検知閾値が一定値以上になった場合には、操作板110もしくは、操作スイッチ180a~180fが押下されたことを検知することができ、さらに、最大圧力値が得られた圧力センサ150a~150f以外にも一定値以上の押圧力が検出された場合には、操作板110が押下されたと判断する。最大圧力値が得られた圧力センサ150a~150f以外に一定値以上の押圧力が検出されなかった場合には、操作スイッチ920が押下されたと判断する。なお、最大圧力値が大きくなるほど、その他の圧力センサ150a~150fの検出圧力値も大きくなるため、押圧検知閾値を超えた後は、最大圧力値と、その次に大きな圧力値との比を、設定した閾値と比較することによって、操作スイッチ180a~180fの押下と、操作板110の押下とを識別する。なお、最大圧力値と、その次に大きな圧力値との差を設定した閾値と比較してもある程度の識別は可能である。
 このように構成することにより、操作スイッチ180a~180fと操作板110の押下の検出を同一の圧力センサ150a~150fで検出することができるため、通常、操作スイッチとして用いられるタクトスイッチが不要になるため低コスト化を図ることができる。
 実施の形態7.
 実施の形態7について、図28~図32を用いて説明する。
 なお、実施の形態1乃至実施の形態6と共通する部分については、同一の符号を付し、説明を省略する。
 図28は、この実施の形態におけるタッチパネル800の外観の一例を示す全体斜視図である。
 タッチパネル800は、6つに分割された操作画面810a~810f(分離領域)を有する。操作画面810a~810fは、それぞれ、ボタン811を1つずつ表示する。操作画面810a~810fは、横方向3列・縦方向2行に碁盤の目状に配置されている。
 図29は、この実施の形態におけるタッチパネル800の構造の一例を示す分解斜視図である。
 化粧板820は、架橋部823を有する。架橋部823は、開口部821を6つの開口部821a~821fに分割する。
 本体100の中央部111は、開口部821a~821fに対応して、6つの中央部111a~111fに分割されている。
 図30は、この実施の形態における本体100の構造の一例を示す分解斜視図である。
 本体100は、4つの圧力センサ150g~150jを有する。
 圧力センサ150g~150jは、操作板110と操作画面表示装置140との間に位置する。圧力センサ150g~150jは、化粧板820の架橋部823の真下になる位置に配置されているので、タッチパネル800の外部からは見えない。
 圧力センサ150gの圧力検出位置は、2つの中央部111a,111bの間の位置である。圧力センサ150hの圧力検出位置は、2つの中央部111b,111cの間の位置である。圧力センサ150iの圧力検出位置は、2つの中央部111d,111eの間の位置である。圧力センサ150jの圧力検出位置は、2つの中央部111e,111fの間の位置である。
 なお、この図には、検出位置支持部120が図示されていないが、実施の形態1乃至実施の形態6と同様、検出位置支持部120を設け、検出位置支持部120を介して、圧力センサ150g~150jが検出位置圧力を検出する構成としてもよい。
 また、この例では、操作画面表示装置140の表示を変えることにより、ボタン811の表示内容を変えることができるよう構成しているが、ボタン811の表示内容を変える必要がない場合には、ボタン811の表示内容を中央部111にあらかじめ印刷などにより表示しておき、操作画面表示装置140を設けない構成としてもよい。
 図31は、この実施の形態における圧力センサ150g~150jが検出する検出位置圧力の例を示すグラフ図である。
 グラフ703は、利用者が中央部111aを押下した場合を表わす。グラフ704は、利用者が中央部111bを押下した場合を表わす。グラフ705は、利用者が中央部111cを押下した場合を表わす。グラフ706は、利用者が中央部111dを押下した場合を表わす。グラフ707は、利用者が中央部111eを押下した場合を表わす。グラフ708は、利用者が中央部111fを押下した場合を表わす。
 利用者が、操作板110の奥側に位置する3つの中央部111a~111cのいずれかを押下した場合、圧力センサ150g,150hが検出する検出位置圧力が大きくなり、逆に、圧力センサ150i,150jが検出する検出位置圧力は小さくなる。
 また、利用者が、操作板110の手前側に位置する3つの中央部111d~111fのいずれかを押下した場合、圧力センサ150i,150jが検出する検出位置圧力が大きくなり、逆に、圧力センサ150g,150hが検出する検出位置圧力は小さくなる。
 利用者が、操作板110の左端に位置する2つの中央部111a,111dのいずれかを押下した場合、押下された位置に隣接する圧力センサ150gまたは圧力センサ150iが検出する検出位置圧力は、押下判定閾値Pを超えるが、押下された位置から遠い圧力センサ150h及び圧力センサ150jが検出する検出位置圧力は、押下判定閾値Pを超えない。
 逆に、利用者が、操作板110の右端に位置する2つの中央部111c,111fのいずれかを押下した場合、押下された位置に隣接する圧力センサ150hまたは圧力センサ150jが検出する検出位置圧力は、押下判定閾値Pを超えるが、押下された位置から遠い圧力センサ150g及び圧力センサ150iが検出する検出位置圧力は、押下判定閾値Pを超えない。
 また、利用者が、操作板110の中央に位置する中央部111bを押下した場合、押下された位置を挟む2つの圧力センサ150g,150hが検出する検出位置圧力がともに押下判定閾値Pを超える。同様に、利用者が、操作板110の中央に位置する中央部111eを押下した場合、押下された位置を挟む2つの圧力センサ150i,150jが検出する検出位置圧力がともに押下判定閾値Pを超える。
 このように、圧力センサ150g~150jが検出する検出位置圧力は、圧力検出位置に隣接する位置を利用者が押下した場合に、押下判定閾値Pを超える。
 図32は、この実施の形態における加圧位置判定処理S610の流れの一例を示すフローチャート図である。
 加圧位置判定処理S610は、押下閾値判定工程S651、隣接判定工程S652、端判定工程S653を有する。
 押下閾値判定工程S651において、閾値判定部234は、CPU911を用いて、圧力センサ150g~150jが検出した検出位置圧力に基づいて、押下判定閾値Pを超える検出位置圧力を検出した圧力センサを判定する。
 押下判定閾値Pを超える検出位置圧力を検出した圧力センサがない場合、加圧位置判定装置200は、CPU911を用いて、操作板110が押下されていないと判定し、加圧位置判定処理S610を終了する。
 押下判定閾値Pを超える検出位置圧力を検出した圧力センサがある場合、隣接判定工程S652へ進む。
 隣接判定工程S652において、位置判定部235は、CPU911を用いて、押下閾値判定工程S651で閾値判定部234が判定した圧力センサのなかに、圧力検出位置が隣接した圧力センサがあるか否かを判定する。圧力検出位置が隣接した圧力センサとは、1つの中央部を挟む位置を圧力検出位置とする圧力センサのことである。例えば、圧力センサ150gと圧力センサ150hとは、圧力検出位置が隣接しているが、圧力センサ150gと圧力センサ150iとは、圧力検出位置が隣接していない。
 圧力検出位置が隣接した圧力センサがある場合、位置判定部235は、CPU911を用いて、隣接した圧力検出位置に挟まれた中央部が押下されたと判定し、加圧位置判定処理S610を終了する。
 圧力検出位置が隣接した圧力センサがない場合(押下閾値判定工程S651で閾値判定部234が判定した圧力センサが1つだけの場合も含む)、端判定工程S653へ進む。
 端判定工程S653において、位置判定部235は、CPU911を用いて、押下閾値判定工程S651で閾値判定部234が判定した圧力センサのなかに、圧力検出位置が端にある圧力センサがあるか否かを判定する。圧力検出位置が端にある圧力センサとは、圧力検出位置に隣接する中央部を挟む位置を圧力検出位置とする圧力センサがない圧力センサのことである。例えば、圧力センサ150gは、圧力検出位置が隣接している2つの中央部111a,111bがある。このうち、中央部111bは、圧力センサ150hの圧力検出位置との間に挟まれているが、中央部111aは、いずれの圧力センサの圧力検出位置との間にも挟まれていない。したがって、圧力センサ150gは、圧力検出位置が端にある。この例では、中央部111a~111fは、横方向に3列に並んでいるので、圧力センサ150g~150jは、いずれも圧力検出位置が端にある。このため、端判定工程S653はなくてもよい。これに対し、中央部が横方向に4列以上に並んでいる場合は、圧力センサのなかに、圧力検出位置が端にないものが存在する。
 押下閾値判定工程S651で閾値判定部234が判定した圧力センサのなかに圧力検出位置が端にある圧力センサがある場合、位置判定部235は、CPU911を用いて、その圧力検出位置に隣接する中央部が押下されたと判定し、加圧位置判定処理S610を終了する。
 押下閾値判定工程S651で閾値判定部234が判定した圧力センサのなかに圧力検出位置が端にある圧力センサがない場合、位置判定部235は、CPU911を用いて、操作板110が押下されていないと判定し、加圧位置判定処理S610を終了する。
 このように、操作領域を複数に分離し、碁盤の目状に分離された分離領域に挟まれた位置を圧力検出位置とする圧力センサ150g~150jを設けることにより、分離領域に対応する位置を圧力検出位置とする圧力センサを設ける場合と比較して、分離領域1行につき1つずつ圧力センサが少なくて済む。これにより、タッチパネル800の部品数を減らし、製造コストを削減し、小型化を図ることができる。
 この実施の形態における位置入力装置(タッチパネル800)は、操作領域内の任意の位置に圧力が加えられた場合に、圧力が加えられた加圧位置を判定する。
 位置入力装置は、操作板110と、少なくとも2つの圧力検出装置(圧力センサ150g~150j)と、加圧位置判定装置200とを有する。
 上記操作板110は、平板状であり、一方の面に上記操作領域を有する。
 上記圧力検出装置は、他の圧力検出装置と異なる圧力検出位置において上記加圧位置に加えられた圧力により発生する検出位置圧力を検出する。
 上記操作領域は、互いに分離した複数の分離領域(中央部111a~111f)を有する。
 上記圧力検出位置は、上記操作板110上の上記複数の分離領域の間に位置する。
 上記加圧位置判定装置200は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置が上記複数の分離領域のいずれに含まれるかを判定する。
 この実施の形態における位置入力装置(タッチパネル800)によれば、複数の分離領域に対応する位置を圧力検出位置とする圧力検出装置を設ける場合と比較して、圧力検出装置の数が少なくて済むので、位置入力装置の部品点数を減らし、製造コストを削減し、小型化を図ることができる。
 以上説明した位置入力装置は、操作領域内の複数の定められた位置に圧力が加えられた場合に、圧力が加えられた加圧位置を判定する。
 位置入力装置は、操作板110と、少なくとも2つの圧力検出装置(圧力センサ150g~150j)と、加圧位置判定装置200とを有する。
 上記操作板110は、平板状であり、一方の面に上記操作領域を有する。
 上記圧力検出装置は、他の圧力検出装置と異なる圧力検出位置において上記加圧位置に加えられた圧力により発生する検出位置圧力を検出する。
 操作領域の複数の定められた位置の境界位置に圧力検出装置を配置する。
 上記加圧位置判定装置200は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置を判定する。
 例えば、操作板110に対して、8箇所の押下位置が横一列に並んで示されているとする。押下位置は、操作板110に印刷してあってもよいし、押下位置の部分のみ透明な操作板であって、裏面側から、操作板110の大きさの表示装置(操作画面表示装置140)で表示してもよい。
 押下位置各々の境界部分に圧力センサ150を配置する。
 最左端のボタンを押下したときには、最左端のボタンとその右隣のボタンの間に存在する圧力センサ150に圧力がかかるため、各圧力センサ150の圧力値から、押下位置を特定することが可能である。
 また、中間のボタンを押下した時には、そのボタンの両側にある圧力センサ150に圧力がかかり、それ以外に圧力が発生しないため、押下位置の検出は容易である。
 このように圧力センサ150をボタンの境界位置に配置することによって、押下位置の直下に配置する場合と比較し、押下されたボタンの位置を正確に判断することが可能となり、また、圧力センサ150の個数自体も1つ削減することが可能となるため、低コスト化と高精度化が実現できる。また、圧力センサ150が不透明であっても、境界位置に配置するため、境界位置のみが見えないように操作板110の裏面に印刷を施し、裏面に表示装置を配置しても見栄えの良い意匠を実現することができる。
 実施の形態8.
 実施の形態8について、図33を用いて説明する。
 なお、実施の形態1乃至実施の形態7と共通する部分については、同一の符号を付し、説明を省略する。
 図33は、この実施の形態におけるタッチパネル800の外観の一例を示す全体斜視図である。
 タッチパネル800は、実施の形態7と同様、6つに分割された操作画面810a~810f(分離領域)を有する。また、タッチパネル800は、4つの操作スイッチ180g~180jを有する。
 操作スイッチ180g~180jは、操作画面810a~810f全体よりも外側で、操作画面810a~810fの間を分割する架橋部823の延長線上に位置する。
 操作スイッチ180g~180jの構造は、実施の形態6で説明したものと同様である。操作スイッチ180g~180jの真下にあたる位置に、図示していない圧力センサ150g~150jがあり、操作板110や対応する操作スイッチ180g~180jが押下された場合に、検出位置圧力を検出する。
 このように、圧力センサ150g~150jの圧力検出位置が、分離領域の間ではなく、分離領域を隔てる境界線の延長線上であっても、実施の形態7と同様に、加圧位置を判定することができる。
 また、実施の形態6の構成と組み合わせて、各圧力センサ150g~150jに対応する操作スイッチ180g~180jを設けてもよい。
 以上説明した位置入力装置(タッチパネル800)は、圧力センサ150の位置を境界位置の延長線上に配置する。このように配置することにより、操作部は、境界部分を気にすることなく設計することができるため、意匠の自由度が増加する。
 なお、ボタン811は、横一列に並べてもよいし、二列に並べてもよい。圧力センサ150をボタン811の上下に逃がすように配置することにより、裏面に表示装置を配置した場合でも、境界部分を気にすることなく、意匠を設計することが可能である。
 実施の形態9.
 実施の形態9について、図34~図42を用いて説明する。
 なお、実施の形態1乃至実施の形態8と共通する部分については、同一の符号を付し、説明を省略する。
 図34は、この実施の形態における本体100の構造の一例を示す斜視図である。
 本体100は、4つの操作板支持部135g~135j、4つの支持調整部190g~190jを有する。
 操作板支持部135g~135jは、隣接する圧力センサ150の圧力検出位置の中間に位置し、操作板110を支持する。
 支持調整部190g~190jは、操作板支持部135g~135jにそれぞれ対応し、対応する操作板指示部135g~135jの高さなどを調整する。
 操作板支持部135g~145jが圧力センサ150の圧力検出位置の中間で操作板110を支持することにより、操作板110に加えられた圧力が、加圧位置から遠い圧力センサに伝わるのを防ぐことができるので、加圧位置の判定が容易になる。
 図35は、この実施の形態における支持調整部190の構造の一例を示す拡大正視図である。
 支持調整部190は、例えば、調整ネジ191を有する。調整ネジ191は、底板160に設けられたネジ穴161と螺合する。調整ネジ191を回転することにより、操作板支持部135の高さを変えることができる。
 操作板支持部135の高さが高い場合、操作板110に加えられた圧力が小さいと、圧力センサ150に圧力が伝わらず、検出位置圧力を検出しない。逆に、操作板支持部135の高さが低い場合、操作板110に加えられた圧力が小さくても、圧力センサ150に圧力が伝わり、検出位置圧力を検出する。
 このため、操作板支持部135の高さを調整することにより、圧力センサ150が検出する検出位置圧力を調整することができる。
 以上説明した位置入力装置(タッチパネル800)は、操作領域内の任意の位置に圧力が加えられた場合に、圧力が加えられた加圧位置を判定する。
 位置入力装置は、操作板110と、少なくとも2つの圧力検出装置(圧力センサ150)と、加圧位置判定装置200とを有する。
 上記操作板110は、平板状であり、一方の面に上記操作領域を有する。
 上記圧力検出装置は、他の圧力検出装置と異なる圧力検出位置において上記加圧位置に加えられた圧力により発生する検出位置圧力を検出する。
 連続する2つの圧力検出装置の間に、高さを制御する機構を有する支持部(操作板支持部135、支持調整部190)を有し、支持部の高さを変更することにより、圧力検出装置に与える加圧力を調整する。
 上記加圧位置判定装置200は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置を判定する。
 例えば、操作板110に対して、3つの圧力センサ150が配置され、圧力センサ150の間に支持部(操作板支持部135、支持調整部190)が取り付けられているとする。操作板を操作(押下)する箇所は、支持部の間の位置に存在するものとする。前記支持部は、連続する2つの圧力センサ150の中央に配置され、この支持部は、背面から、高さ調節ネジ(調整ネジ191)によって、高さを変更することが可能である。この高さを高くすれば、押下圧力が一定値以上に達するまでは、圧力センサに圧力が伝わらなくなる。このようにして、初期圧力を調整することにより、操作感の変更、圧力センサ150の感度ばらつきの補正をすることができる。
 また、2つの支持部の間隔よりも大きな製品(例えば、本実施の形態をIHクッキングヒータなどに適用する場合には、鍋などが想定される)を、操作板の上に置いた場合でも圧力センサ150は圧力を検知しないため、誤操作を防止することができる。
 図36は、この実施の形態における支持調整部190の構造の別の例を示す拡大正視図である。
 支持調整部190は、例えば、固定ネジ192を有する。固定ネジ192は、底板160に設けられたガイド穴162に挿通し、操作板支持部135と螺合する。固定ネジ192を締めて、底板160を操作板支持部135との間に挟持することにより、操作板支持部135が動かないよう固定することができ、固定ネジ192を緩めることにより、操作板支持部135をガイド穴162の方向に移動させることができる。
 操作板支持部135の位置が圧力検出位置に近い場合、圧力センサ150が検出する検出位置圧力は小さくなり、逆に、操作板支持部135の位置が圧力検出位置から遠い場合、圧力センサ150が検出する検出位置圧力は大きくなる。
 また、操作板支持部135の位置を変えることにより、各圧力センサ150が検出位置圧力を検出する加圧位置の範囲を変えることができる。
 以上説明した位置入力装置(タッチパネル800)は、操作領域内の任意の位置に圧力が加えられた場合に、圧力が加えられた加圧位置を判定する。
 位置入力装置は、操作板110と、少なくとも2つの圧力検出装置(圧力センサ150)と、加圧位置判定装置200とを有する。
 上記操作板110は、平板状であり、一方の面に上記操作領域を有する。
 上記圧力検出装置は、他の圧力検出装置と異なる圧力検出位置において上記加圧位置に加えられた圧力により発生する検出位置圧力を検出する。
 連続する2つの圧力検出装置の間に、平面内で可動する機構を有する支持部(操作板支持部135、支持調整部190)を有し、支持部の位置を変更することにより、圧力検出装置に与える加圧力を調整する。
 上記加圧位置判定装置200は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置を判定する。
 例えば、操作板110に対して、3つの圧力センサ150が配置され、圧力センサ150の間に支持部(操作板支持部135、支持調整部190)が取り付けられているとする。操作(押下)する箇所は、支持部の間の位置に存在するものとする。前記支持部は、連続する2つの圧力センサ150の間に配置され、この支持部は、背面から、位置調節ネジ(固定ネジ192)を緩めることによって、位置を横方向にスライドすることが可能である。この支持部をスライドすることにより、支持部が近い位置にある圧力センサ150は、操作板110に対する押圧力に対して、小さな圧力しか得られず、逆に支持部が圧力センサ150から遠い位置にある場合には、近い位置に圧力センサ150がある場合に比べ、大きな圧力値を得ることができる。このようにすることで、構造のばらつきや、圧力センサ150自体の感度ばらつきを補正することができる。
 図37は、この実施の形態における支持調整部190の構造の更に別の例を示す拡大正視図である。
 操作板支持部135は、左側支持部136と右側支持部137との2つに分かれている。左側支持部136及び右側支持部137は、内側にテーパーを有する。
 支持調整部190は、調整ネジ191、2つの弾性体193を有する。調整ネジ191は、底板160に設けられたネジ穴161と螺合する。弾性体193は、例えばゴム・樹脂・バネなどであり、左側支持部136と右側支持部137とを接続し、両者を引き寄せようとする力を発揮する。調整ネジ191の先端は、略円錐状であり、左側支持部136及び右側支持部137の内側に設けられたテーパーに当接する。
 調整ネジ191を回転させて、調整ネジ191の位置を下げると、左側支持部136と右側支持部137との間が押し広げられ、操作板支持部135全体の幅が広くなる。逆に、調整ネジ191を回転させて、調整ネジ191の位置を上げると、弾性体193の働きにより、左側支持部136と右側支持部137とが引き寄せられ、操作板支持部135全体の幅が狭くなる。
 以上説明した位置入力装置(タッチパネル800)は、操作領域内の任意の位置に圧力が加えられた場合に、圧力が加えられた加圧位置を判定する。
 位置入力装置は、操作板110と、少なくとも2つの圧力検出装置(圧力センサ150)と、加圧位置判定装置200とを有する。
 上記操作板110は、平板状であり、一方の面に上記操作領域を有する。
 上記圧力検出装置は、他の圧力検出装置と異なる圧力検出位置において上記加圧位置に加えられた圧力により発生する検出位置圧力を検出する。
 連続する2つの圧力検出装置の間に、支持幅を可変にする機構を有する支持部(操作板支持部135、支持調整部190)を有し、支持幅を変更することにより、圧力検出装置に与える加圧力を調整する。
 上記加圧位置判定装置200は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置を判定する。
 例えば、操作板110に対して、3つの圧力センサ150が配置されており、圧力センサ150の間には、支持部(操作板支持部135、支持調整部190)が取り付けられているとする。操作(押下)する箇所は、支持部の間の位置に存在するものとする。前記支持部は、連続する2つの圧力センサ150の間に配置され、この支持部は、背面から、円錐型の支持幅調節ネジ(調整ネジ191)によって、支持部の幅を変更することが可能である。この支持部は一体成型された樹脂バネ(弾性体193)により、保持されており、円錐型の支持幅調節ネジをねじ込むことによって、支持部の幅を広くしたり狭くしたりできる。支持幅調節ネジによって、この支持部の大きさを大きくすることにより、圧力センサ150が圧力を検知する領域を小さくすることができる。このように操作できる面積を限定することができるため、誤操作の割合と使い勝手のバランスを調節することが可能となる。
 図38は、この実施の形態における支持調整部190の構造のまた更に別の例を示す斜視図である。
 操作板支持部135は、図37の例と同様、左側支持部136と右側支持部137とに分かれている。
 支持調整部190は、基部410、第一可動部420、第二可動部430を有する。
 基部410は、支持調整部190のうち、位置が変わらない部分であり、底板160に固定あるいは半固定されている。なお、基部410は、底板160と一体に形成されたものであってもよい。
 第一可動部420は、基部410の上の位置し、基部410に対して垂直方向の位置が変化する。
 第二可動部430は、第一可動部420の上に位置し、第一可動部420とともに垂直方向の位置が変化する。また、第二可動部430は、第一可動部420に対して水平方向の位置が変化する。
 左側支持部136及び右側支持部137は、第二可動部430の上に位置し、第二可動部430とともに垂直方向及び水平方向の位置が変化する。また、左側支持部136及び右側支持部137は、互いの距離が変化する。
 図39は、この例における支持調整部190の構造を示す分解斜視図である。
 基部410は、高さ調整ネジ411、円板部412、底面部416、2つの側面部417を有する。
 高さ調整ネジ411は、底面部416に設けられたネジ穴に螺合する。円板部412は、高さ調整ネジ411の先端に固定されている。高さ調整ネジ411を回転することにより、円板部412の高さを変えることができる。
 2つの開口部413,414は、底面部416に設けられ、それぞれ、後述する位置調整ネジ421及び幅調整ネジ431の軸を通すための貫通穴である。
 4つのガイド溝部415は、側面部417の内側に垂直方向に設けられた溝であり、第一可動部420の可動方向を規制する。
 第一可動部420は、位置調整ネジ421(図40参照)、ギヤボックス422、平面部426を有する。
 平面部426は、円板部412の上に載っていて、円板部412の上下動にともなって、上下に移動する。
 位置調整ネジ421は、平面部426に設けられた貫通穴に挿通し、ギヤボックス422内の歯車に接続している。ギヤボックス422は、互いに噛み合った同じ歯数の歯車を2つ有する。位置調整ネジ421を回転することにより、ギヤボックス422の2つの歯車が互いに反対の方向に回転する。
 開口部423は、平面部426に設けられ、幅調整ネジ431の軸を通すための貫通穴である。
 4つのガイド突部424は、平面部426の側面に設けられた突起であり、それぞれ、ガイド溝部415と係合する。ガイド突部424がガイド溝部415に沿った方向に移動することにより、第一可動部420の可動方向を規制する。
 3つのガイド溝部425は、平面部426の上面に設けられた溝であり、第二可動部430・左側支持部136・右側支持部137の可動方向を規制する。
 第二可動部430は、幅調整ネジ431、ギヤボックス432、腕部436、枠部437を有する。
 幅調整ネジ431は、腕部436に設けられた貫通穴に挿通し、ギヤボックス432内の歯車に接続している。ギヤボックス432は、1つの歯車を有する。幅調整ネジ431を回転することにより、ギヤボックス432の歯車が回転する。
 2つのラックギヤ433は、枠部437の内側に設けられ、ギヤボックス422の2つの歯車それぞれと噛み合い、歯車の回転運動を水平方向の直線運動に変換する。位置調整ネジ421を回転することにより、ギヤボックス422の歯車が回転すると、第二可動部430全体が横方向に移動する。
 3つのガイド突部434は、腕部436及び枠部437の下面に設けられた突起であり、それぞれ、ガイド溝部425と係合する。ガイド突部434がガイド溝部425に沿った方向に移動することにより、第二可動部430の可動方向を規制する。
 2つのガイド溝部435は、枠部437の上面に設けられた溝であり、左側支持部136及び右側支持部137の可動方向を規制する。
 左側支持部136及び右側支持部137は、それぞれ、ラックギヤ138、3つのガイド突部139を有する。
 ラックギヤ138は、ギヤボックス432の歯車と噛み合い、歯車の回転運動を水平方向の直線運動に変換する。幅調整ネジ431を回転することにより、ギヤボックス432の歯車が回転すると、左側支持部136と右側支持部137とが、互いに反対方向に移動する。
 3つのガイド突部139は、ガイド溝部425,435と係合する。ガイド突部139がガイド溝部425,435に沿った方向に移動することにより、左側支持部136及び右側支持部137の可動方向を規制する。
 図40は、この例における支持調整部190の動きを示す側面視断面図である。
 高さ調整ネジ411を回転させると、円板部412が上下に移動する。これにともなって、円板部412の上に載った第一可動部420、及び、更にその上の載った第二可動部430・左側支持部136・右側支持部137が、全体として上下に移動する。
 図41は、この例における支持調整部190の別の動きを示す平面図及び側面視断面図である。
 位置調整ネジ421を回転させると、ギヤボックス422の歯車が回転し、これが直線運動に変換されて、第二可動部430、及び、その上に載った左側支持部136・右側支持部137が、全体として横方向に移動する。
 図42は、この例における支持調整部190の更に別の動きを示す平面図及び側面視断面図である。
 幅調整ネジ431を回転させると、ギヤボックス432の歯車が回転し、これが直線運動に変換されて、左側支持部136及び右側支持部137が互いに反対方向に移動する。これにより、左側支持部136と右側支持部137との間隔が、広くなったり狭くなったりする。
 このように、高さ調整ネジ411、位置調整ネジ421、幅調整ネジ431をそれぞれ回転させることにより、操作板支持部135の高さ・位置・幅をそれぞれ調整することができる。
 なお、操作板支持部135の高さ・位置・幅のうち、いずれかを調整する機構を省略してもよい。また、操作板支持部135の広さや縦方向の位置などを調整する機構を加えてもよい。
 この実施の形態における位置入力装置(タッチパネル800)は、更に、操作板支持調整部(支持調整部190)を有する。
 上記操作板支持調整部は、上記操作板支持部135が上記操作板110を支持する高さと位置と幅と広さとのうち少なくともいずれかを調整可能とする。
 この実施の形態における位置入力装置(タッチパネル800)によれば、操作板支持部135の高さなどを調整することにより、圧力検出装置(圧力センサ150)が検出する検出位置圧力を容易に調整することができる。
 以上説明した位置入力装置(タッチパネル800)は、支持部(操作板支持部135、支持調整部190)の高さ・位置・幅を調整できる機構を組み合わせて使うことにより、より自由度の高い変更が可能になる。
 なお、この実施の形態で説明した支持調整部190と同様の機構を、操作板支持部131、操作板支持受部132、検出位置支持部120などに設けてもよい。また、操作板支持部131・操作板支持受部132・弾性体133で構成される支持部に、同様の機構を設けてもよい。高さを変更可能とすることにより、押圧力に対する検出感度を変更することが可能になり、さらに操作板110に対して左右の圧力のバランスを調節することが可能になる。また、支持部をスライドすることを可能とすることにより、上側3つの圧力センサの感度と、下側3つの圧力センサの感度を調節することができる。例えば、意匠上、操作板110を押下するボタンの位置を上側に偏らせる、下側に偏らせるなどの調節が可能となる。また、支持部の幅を調節可能とすることにより、押圧力に対する検出感度の調節と、操作板を押下した場合に、圧力を検出しない領域を増減することが可能となる。
 以上説明した位置入力装置(タッチパネル800)は、各操作板支持部の高さを変更することにより、圧力検出装置(圧力センサ150)に与える圧力バランスもしくは、圧力検出装置の感度を調整する。
 実施の形態10.
 実施の形態10について、図43~図45を用いて説明する。
 なお、実施の形態1乃至実施の形態9と共通する部分については、同一の符号を付し、説明を省略する。
 図43は、この実施の形態における数値入力装置850の外観の一例を示す斜視図である。
 数値入力装置850は、実施の形態1~実施の形態9で説明したタッチパネル800を応用したものである。数値入力装置850は、入力した数値を操作画面810に表示する。数値は、図示したようにデジタル表示してもよいし、棒グラフなどの図形を用いて表示してもよい。また、数値入力装置850が入力した数値は、例えばエアコンの設定温度など外部の装置が利用するものであってもよいし、圧力センサ150の感度調整など数値入力装置850の内部で利用するものであってもよい。
 数値入力装置850は、入力した数値のほか、少なくとも2つのボタン811を操作画面810に表示する。1つのボタン811は、数値を増加させる増加ボタン、他の1つのボタン811は、数値を減少させる減少ボタンである。
 図44は、この実施の形態における数値入力装置850の機能ブロックの構成の一例を示すブロック構成図である。
 数値入力装置850は、加圧位置判定装置200に加えて、数値記憶装置270、数値変更装置280を有する。なお、数値記憶装置270及び数値変更装置280は、CPU911・RAM914など、加圧位置判定装置200と同一のハードウェアを用いて構成してもよいし、加圧位置判定装置200と異なるハードウェアを用いて構成してもよい。
 数値記憶装置270は、RAM914を用いて、数値を記憶する。
 加圧位置判定装置200は、CPU911を用いて、数値記憶装置270が記憶した数値や増加ボタン・減少ボタンを含む操作画面を生成し、操作画面表示装置140に表示させる。また、加圧位置判定装置200は、利用者が操作板110を押下した場合に、CPU911を用いて、押下した加圧位置と、押下した圧力とを算出する。
 数値変更装置280は、ボタン判定部281、圧力判定部282、差分間隔決定部283、差分加減算部284を有する。
 ボタン判定部281は、加圧位置判定装置200が算出した加圧位置に基づいて、CPU911を用いて、利用者が増加ボタンを押下したか、減少ボタンを押下したかを判定する。
 圧力判定部282は、加圧位置判定装置200が算出した圧力に基づいて、CPU911を用いて利用者が操作板110を押下した圧力が所定の閾値より大きいか小さいかを判定する。
 差分間隔決定部283は、圧力判定部282が判定した判定結果に基づいて、CPU911を用いて、数値を変更する差分と間隔とを決定する。
 差分加減算部284は、差分間隔決定部283が決定した差分と間隔とに基づいて、CPU911を用いて、数値記憶装置270が記憶した数値を変更する。
 図45は、この実施の形態における数値変更処理S660の流れの一例を示すフローチャート図である。
 数値変更処理S660において、数値変更装置280は、加圧位置判定装置200の判定結果に基づいて、数値記憶装置270が記憶した数値を変更する。数値変更処理S660は、ボタン判定工程S661、圧力判定工程S662、第一差分間隔決定工程S663、第二差分間隔決定工程S664、差分加減算工程S665、待機工程S666を有する。
 ボタン判定工程S661において、ボタン判定部281は、加圧位置判定装置200が算出した加圧位置に基づいて、CPU911を用いて、利用者が押下したボタン811を判定する。
 利用者が押下したボタン811が増加ボタンである場合、もしくは、減少ボタンである場合、圧力判定工程S662へ進む。
 利用者が押下したボタン811がそれ以外のボタンである場合、もしくは、利用者がボタン811を押下していない場合、数値変更処理S660を終了する。
 圧力判定工程S662において、圧力判定部282は、加圧位置判定装置200が算出した圧力に基づいて、CPU911を用いて、利用者が増加ボタンまたは減少ボタンを押下した圧力が所定の閾値より大きいか小さいかを判定する。
 圧力が閾値より大きい場合、第一差分間隔決定工程S663へ進む。
 圧力が閾値より小さい場合、第二差分間隔決定工程S664へ進む。
 第一差分間隔決定工程S663において、差分間隔決定部283は、CPU911を用いて、所定の値dを差分Δxとし、所定の値tを間隔Δtとする。その後、差分加減算工程S665へ進む。
 第二差分間隔決定工程S664において、差分間隔決定部283は、CPU911を用いて、所定の値dを差分Δxとし、所定の値tを間隔Δtとする。その後、差分加減算工程S665へ進む。
 ここで、d及びdは0より大きく、dはd以上である。また、t及びtは0より大きく、tはt以下である。ただし、dとdとが等しい場合は、tはtより小さい。
 差分加減算工程S665において、差分加減算部284は、CPU911を用いて、数値記憶装置270が記憶した数値を取得する。
 ボタン判定工程S661でボタン判定部281が判定したボタン811が増加ボタンである場合、差分加減算部284は、CPU911を用いて、第一または第二差分間隔決定工程S663,S664で差分間隔決定部283が決定した差分Δxを、取得した数値に加算する。
 ボタン判定工程S661でボタン判定部281が判定したボタン811が減少ボタンである場合、差分加減算部284は、CPU911を用いて、第一または第二差分間隔決定工程S663,S664で差分間隔決定部283が決定した差分Δxを、取得した数値から減算する。
 数値記憶装置270は、RAM914を用いて、差分加減算部284が差分Δxを加算もしくは減算した数値を記憶する。
 待機工程S666において、差分加減算部284は、CPU911を用いて、第一または第二差分間隔決定工程S663,S664で差分間隔決定部283が決定した間隔Δtが経過するまで待機する。
 間隔Δtが経過したのち、ボタン判定工程S661に戻る。
 利用者が増加ボタンもしくは減少ボタンを押下した圧力が閾値より大きい場合、数値を変更する差分Δxが大きく、あるいは、数値を変更する間隔Δtが小さいので、数値が変化する速度が速くなる。逆に、利用者が増加ボタンもしくは減少ボタンを押下した圧力が閾値より小さい場合、数値を変更する差分Δxが小さく、あるいは、数値を変更する間隔Δtが大きいので、数値が変化する速度が遅くなる。
 これにより、ボタンを押下している時間の長さなどに基づいて数値が変化する速度を変える場合と比較して、直感的な操作が可能となり、また、利用者が所望の値に数値を変化させるまでにかかる時間を短縮することができる。
 なお、この例では、閾値を1つ設けることにより数値が変化する速度を2段階に変えられる構成としているが、閾値の数をもっと多くすることにより、数値が変化する速度をもっと多くの段階に変えられる構成としてもよいし、数値が変化する速度を連続的に変える構成としてもよい。
 この実施の形態における位置入力装置(数値入力装置850)は、更に、数値記憶装置270と、数値変更装置280とを有する。
 上記数値記憶装置270は、数値を記憶する。
 上記数値変更装置280は、上記操作領域内の所定の位置に圧力が加えられたと上記加圧位置判定装置200が判定した場合に、上記圧力検出装置(圧力センサ150)が検出した検出位置圧力に基づいて、上記数値記憶装置270が記憶した数値を変更する差分Δxおよび間隔Δtを決定し、決定した間隔Δtで、決定した差分Δxを上記数値記憶装置270が記憶した数値に加算もしくは減算する。
 この実施の形態における位置入力装置(数値入力装置850)によれば、利用者が加えた圧力に基づいて数値を変更する速度を変えるので、直感的な操作を可能にし、操作時間を短縮することができる。
 以上説明した位置入力装置(数値入力装置850)は、圧力検出装置(圧力センサ150)の検出した圧力に応じて、操作画面表示装置140に表示する設定値の表示速度を変更する。もしくは、圧力検出装置の検出した圧力に応じて、操作画面表示装置140に表示する設定値の表示ステップ数を変更する。
 例えば、操作画面表示装置140上に、温度設定値を表示する。数値入力装置850は、操作板110のボタン811(増加ボタン・減少ボタン)を押下したときに、この温度設定値を変化させる。数値入力装置850は、圧力センサ150の検出圧力の違いにより、温度設定値の表示の変化速度を変更する。
 押下位置を検出後、検出圧力が一定の閾値A以上の場合には、例えば、500ミリ秒の更新速度(間隔Δt)で変化させ、さらに検出圧力が一定の閾値B以上の場合には、例えば、200ミリ秒の更新速度で変化させることにより、操作性のよいインタフェースを提供することが可能となる。
 また、更新速度を変更するのではなく、更新するステップ数(差分Δx)を変更しても良い。例えば、検出圧力が一定の閾値A以上の場合には、2℃単位で変化させ、さらに検出圧力が一定の閾値B以上の場合には、4℃単位で変化させるなどである。
 数値は、設定用の棒グラフにより表示してもよい。ボタン811を押下する強さにより、設定用棒グラフの更新速度を変更、もしくは更新するステップ数を変更する。
 100 本体、110 操作板、111 中央部、112 外縁部、113 舌部、120 検出位置支持部、121 舌支持部、131,135 操作板支持部、132 操作板支持受部、133,193 弾性体、136 左側支持部、137 右側支持部、138,433 ラックギヤ、139,424,434 ガイド突部、140 操作画面表示装置、141 表示部、142 枠部、150 圧力センサ、160 底板、161 ネジ穴、162 ガイド穴、171,191 調整ネジ、172 ゴム、180 操作スイッチ、190 支持調整部、192 固定ネジ、200 加圧位置判定装置、211 ボタン入力部、212 ボタン記憶部、221 圧力入力部、222 圧力記憶部、231 最大判定部、232 合計算出部、233 比率算出部、234 閾値判定部、235 位置判定部、236 位置出力部、241 モード入力部、242 画面生成部、243 画面出力部、251 補正算出部、252 補正記憶部、253 圧力補正部、270 数値記憶装置、280 数値変更装置、281 ボタン判定部、282 圧力判定部、283 差分間隔決定部、284 差分加減算部、311 ボタン表示位置、331 軸、350 検出位置、410 基部、411 高さ調整ネジ、412 円板部、413,414,423 開口部、415,425,435 ガイド溝部、416 底面部、417 側面部、420 第一可動部、421 位置調整ネジ、422,432 ギヤボックス、426 平面部、430 第二可動部、431 幅調整ネジ、436 腕部、437 枠部、800 タッチパネル、810 操作画面、811 ボタン、815 調整画面、816 秒読み表示、820 化粧板、821 開口部、822 貫通穴、823 架橋部、830 筐体、850 数値入力装置、911 CPU、913 ROM、914 RAM、915 通信装置、916 ADC。

Claims (15)

  1.  操作領域内の任意の位置に圧力が加えられた場合に、圧力が加えられた加圧位置を判定する位置入力装置において、
     操作板と、少なくとも2つの圧力検出装置と、加圧位置判定装置とを有し、
     上記操作板は、平板状であり、一方の面に上記操作領域を有し、
     上記圧力検出装置は、他の圧力検出装置と異なる圧力検出位置において上記加圧位置に加えられた圧力により発生する検出位置圧力を検出し、
     上記圧力検出位置は、上記操作板上の上記操作領域より外側に位置し、
     上記加圧位置判定装置は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置を判定することを特徴とする位置入力装置。
  2.  上記位置入力装置は、少なくとも3つの圧力検出装置を有し、
     上記圧力検出装置の圧力検出位置は、上記操作領域の少なくとも一部を取り囲む多角形を形成し、
     上記加圧位置判定装置は、少なくとも3つの上記圧力検出装置が検出した少なくとも3つの検出位置圧力の比に基づいて、上記加圧位置を判定することを特徴とする請求項1に記載の位置入力装置。
  3.  上記加圧位置判定装置は、少なくとも2つの上記圧力検出装置のうち最も大きい検出位置圧力を検出した圧力検出装置を判定し、上記加圧位置が、少なくとも2つの上記圧力検出位置のうち、判定した圧力検出装置の圧力検出位置に最も近い位置であると判定することを特徴とする請求項1に記載の位置入力装置。
  4.  操作領域内の任意の位置に圧力が加えられた場合に、圧力が加えられた加圧位置を判定する位置入力装置において、
     操作板と、少なくとも2つの圧力検出装置と、加圧位置判定装置とを有し、
     上記操作板は、平板状であり、一方の面に上記操作領域を有し、
     上記圧力検出装置は、他の圧力検出装置と異なる圧力検出位置において上記加圧位置に加えられた圧力により発生する検出位置圧力を検出し、
     上記操作領域は、互いに分離した複数の分離領域を有し、
     上記圧力検出位置は、上記操作板上の上記複数の分離領域の間に位置し、
     上記加圧位置判定装置は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記加圧位置が上記複数の分離領域のいずれに含まれるかを判定することを特徴とする位置入力装置。
  5.  上記位置入力装置は、更に、検出位置支持部を有し、
     上記検出位置支持部は、上記圧力検出位置において上記操作板を支持し、
     上記圧力検出装置は、上記検出位置支持部を介して上記圧力検出位置における検出位置圧力を検出することを特徴とする請求項1乃至請求項4のいずれかに記載の位置入力装置。
  6.  上記位置入力装置は、更に、操作板支持部を有し、
     上記操作板支持部は、上記圧力検出位置と異なる位置において上記操作板を支持することを特徴とする請求項1乃至請求項4のいずれかに記載の位置入力装置。
  7.  上記位置入力装置は、更に、操作板支持調整部を有し、
     上記操作板支持調整部は、上記操作板支持部が上記操作板を支持する高さと位置と幅と広さとのうち少なくともいずれかを調整可能とすることを特徴とする請求項6に記載の位置入力装置。
  8.  上記位置入力装置は、更に、領域外保護部を有し、
     上記領域外保護部は、上記操作板に対して、上記操作領域を有する面の側に位置し、上記操作板の上記操作領域以外の部分に圧力が加えられないよう、上記操作板の上記操作領域以外の部分を覆うことを特徴とする請求項1乃至請求項4のいずれかに記載の位置入力装置。
  9.  上記位置入力装置は、更に、検出圧力調整装置を有し、
     上記検出圧力調整装置は、上記圧力検出装置が検出する検出位置圧力を調整できることを特徴とする請求項1乃至請求項4のいずれかに記載の位置入力装置。
  10.  上記位置入力装置は、更に、検出圧力補正装置とを有し、
     上記検出圧力補正装置は、上記圧力検出装置が検出した検出位置圧力を補正し、
     上記加圧位置判定装置は、上記検出圧力補正装置が補正した検出位置圧力に基づいて、上記加圧位置を判定することを特徴とする請求項1乃至請求項4のいずれかに記載の位置入力装置。
  11.  上記位置入力装置は、更に、操作画面表示装置を有し、
     上記操作板は、透明であり、
     上記操作画面表示装置は、上記操作板に対して、上記操作領域を有する面の反対側に位置し、上記操作板の上記操作領域を通して目視可能な操作画面を表示することを特徴とする請求項1乃至請求項4のいずれかに記載の位置入力装置。
  12.  上記操作板は、上記操作領域に操作画面を表示することを特徴とする請求項1乃至請求項4のいずれかに記載の位置入力装置。
  13.  上記位置入力装置は、更に、操作スイッチを有し、
     上記操作スイッチは、上記圧力検出装置のいずれかに対応し、押下することにより、対応する圧力検出装置に検出位置圧力が加わり、
     上記加圧位置判定装置は、少なくとも2つの上記圧力検出装置が検出した少なくとも2つの検出位置圧力に基づいて、上記操作スイッチが押下されたか否かを判定することを特徴とする請求項1乃至請求項4のいずれかに記載の位置入力装置。
  14.  上記加圧位置判定装置は、上記操作スイッチに対応する圧力検出装置が所定の押下判定閾値より大きい検出位置圧力を検出した場合に、上記操作スイッチに対応する圧力検出装置が検出した検出位置圧力を押下候補圧力とし、他の圧力検出装置が検出した検出位置圧力を非押下候補圧力とし、上記非押下候補圧力が所定の非押下判定閾値より小さい場合および上記押下候補圧力に対する上記非押下候補圧力の比が所定の圧力比閾値より小さい場合および上記押下候補圧力から上記非押下候補圧力を差し引いた差が所定の圧力差閾値より大きい場合の3つの場合のうち少なくともいずれか1つの場合に、上記操作スイッチが押下されたと判定することを特徴とする請求項13に記載の位置入力装置。
  15.  上記位置入力装置は、更に、数値記憶装置と、数値変更装置とを有し、
     上記数値記憶装置は、数値を記憶し、
     上記数値変更装置は、上記操作領域内の所定の位置に圧力が加えられたと上記加圧位置判定装置が判定した場合に、上記圧力検出装置が検出した検出位置圧力に基づいて、上記数値記憶装置が記憶した数値を変更する差分および間隔を決定し、決定した間隔で、決定した差分を上記数値記憶装置が記憶した数値に加算もしくは減算することを特徴とする請求項1乃至請求項4のいずれかに記載の位置入力装置。
PCT/JP2010/050536 2009-04-22 2010-01-19 位置入力装置 WO2010122824A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10766884.0A EP2423790A4 (en) 2009-04-22 2010-01-19 POSITION INPUT APPARATUS
US13/264,438 US9046956B2 (en) 2009-04-22 2010-01-19 Position input apparatus that detects a position where a pressure is applied
JP2011510243A JP5183801B2 (ja) 2009-04-22 2010-01-19 位置入力装置
CN201080017590.9A CN102414647B (zh) 2009-04-22 2010-01-19 位置输入装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009103531 2009-04-22
JP2009-103531 2009-04-22
JP2009204284 2009-09-04
JP2009-204284 2009-09-04

Publications (1)

Publication Number Publication Date
WO2010122824A1 true WO2010122824A1 (ja) 2010-10-28

Family

ID=43010948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050536 WO2010122824A1 (ja) 2009-04-22 2010-01-19 位置入力装置

Country Status (5)

Country Link
US (1) US9046956B2 (ja)
EP (1) EP2423790A4 (ja)
JP (1) JP5183801B2 (ja)
CN (4) CN104035720B (ja)
WO (1) WO2010122824A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054462A (ja) * 2011-09-01 2013-03-21 Kyocera Corp 入力装置
WO2013041946A1 (en) * 2011-09-22 2013-03-28 Toyota Jidosha Kabushiki Kaisha Input apparatus and input apparatus processing method
CN103019449A (zh) * 2012-12-24 2013-04-03 江苏物联网研究发展中心 基于压力传感器的三维多点式触摸屏
JP2013143099A (ja) * 2012-01-12 2013-07-22 Shoei:Kk タッチパネル
JP2013156895A (ja) * 2012-01-31 2013-08-15 Fuji Soft Inc タッチパネルのタッチ位置補正処理方法及びプログラム
JP2013239070A (ja) * 2012-05-16 2013-11-28 Fujitsu Ten Ltd タッチパネル装置、接触位置を検出する方法、及びプログラム
JP2013250726A (ja) * 2012-05-31 2013-12-12 Fujitsu Ten Ltd タッチパネル装置、検出方法、及びプログラム
JP2014004218A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004221A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004223A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004222A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004224A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004220A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014075075A (ja) * 2012-10-05 2014-04-24 Hioki Ee Corp 電子機器および測定装置
JP5537717B1 (ja) * 2013-08-09 2014-07-02 株式会社フジクラ 電子機器
JP5567727B1 (ja) * 2013-09-17 2014-08-06 株式会社フジクラ 電子機器及び電子機器の制御方法
JP2015103132A (ja) * 2013-11-27 2015-06-04 京セラドキュメントソリューションズ株式会社 表示入力装置およびそれを備えた画像形成装置
JP2015533000A (ja) * 2012-10-26 2015-11-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated ディスプレイ上で編集可能なハンドライティングをキャプチャするためのシステムおよび方法
JP2015537321A (ja) * 2012-12-13 2015-12-24 ダヴ 触覚制御インタフェース
JP2016224895A (ja) * 2015-06-03 2016-12-28 群光電子股▲ふん▼有限公司 カーソル制御装置及び方法
JP2020024809A (ja) * 2018-08-06 2020-02-13 ミネベアミツミ株式会社 二次電池の劣化判定システム及び劣化判定方法
US11592949B2 (en) 2019-11-27 2023-02-28 Mitsubishi Electric Corporation Touch panel built-in display with detection of pressed state in the peripheral region

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103452A (zh) * 2009-12-17 2011-06-22 深圳富泰宏精密工业有限公司 飞点控制系统及飞点控制方法
JP5805974B2 (ja) 2010-03-31 2015-11-10 ティーケー ホールディングス,インコーポレーテッド ステアリングホイールセンサ
DE102011006344B4 (de) 2010-03-31 2020-03-12 Joyson Safety Systems Acquisition Llc Insassenmesssystem
DE102011006649B4 (de) 2010-04-02 2018-05-03 Tk Holdings Inc. Lenkrad mit Handsensoren
FR2970790B1 (fr) * 2011-01-24 2013-08-09 Schneider Electric Ind Sas Systeme de dialogue homme-machine
JP5855537B2 (ja) * 2011-06-28 2016-02-09 京セラ株式会社 電子機器
JP2013024835A (ja) * 2011-07-26 2013-02-04 Hioki Ee Corp 測定装置および表示方法
WO2013154720A1 (en) 2012-04-13 2013-10-17 Tk Holdings Inc. Pressure sensor including a pressure sensitive material for use with control systems and methods of using the same
WO2013192539A1 (en) 2012-06-21 2013-12-27 Nextinput, Inc. Wafer level mems force dies
EP2870445A1 (en) 2012-07-05 2015-05-13 Ian Campbell Microelectromechanical load sensor and methods of manufacturing the same
KR101973168B1 (ko) * 2012-08-24 2019-04-29 삼성디스플레이 주식회사 멀티 터치 및 터치 힘을 인식하는 터치 표시장치 및 그 구동 방법
CN103677352A (zh) * 2012-08-31 2014-03-26 汤耀宗 触压感应模块
US9696223B2 (en) 2012-09-17 2017-07-04 Tk Holdings Inc. Single layer force sensor
CN104380231B (zh) * 2012-12-20 2017-10-24 英特尔公司 包括压力传感器的触摸屏
US9035752B2 (en) * 2013-03-11 2015-05-19 Amazon Technologies, Inc. Force sensing input device under an unbroken exterior portion of a device
CN104823138B (zh) * 2013-09-10 2017-10-03 深圳纽迪瑞科技开发有限公司 一种压力感应式触摸屏和触摸显示屏及电子设备
TWI520025B (zh) * 2013-12-17 2016-02-01 友達光電股份有限公司 電容式觸控顯示面板、電容式觸控面板及其製造方法
CN105934661B (zh) 2014-01-13 2019-11-05 触控解决方案股份有限公司 微型强化圆片级mems力传感器
US10365761B2 (en) 2014-03-31 2019-07-30 Texas Instruments Incorporated Capacitive position sensing with pressure compensation using dual-electrode sensor
US10831292B2 (en) * 2014-08-04 2020-11-10 Nextinput, Inc. Force sensitive touch panel devices
US10228151B2 (en) * 2014-12-30 2019-03-12 Vivint, Inc. Floating thermostat plate
JP6421077B2 (ja) * 2015-05-19 2018-11-07 富士フイルム株式会社 アンテナの製造方法およびタッチセンサ
CN106293187B (zh) * 2015-06-08 2019-03-29 摩托罗拉移动通信软件(武汉)有限公司 一种触摸控制方法、装置及终端
US10466119B2 (en) 2015-06-10 2019-11-05 Nextinput, Inc. Ruggedized wafer level MEMS force sensor with a tolerance trench
FR3037688B1 (fr) * 2015-06-19 2017-07-14 Ingenico Group Systeme de securisation d'un dispositif de saisie
KR102383992B1 (ko) * 2015-08-27 2022-04-08 삼성전자주식회사 디스플레이 장치 및 디스플레이 장치의 입력 방법
CN107153481B (zh) * 2016-03-03 2021-03-02 禾瑞亚科技股份有限公司 用于校正触控笔所受的压力值的触控处理方法、装置与系统
KR20170129372A (ko) * 2016-05-17 2017-11-27 삼성전자주식회사 디스플레이를 구비하는 전자 장치
CN106055157B (zh) * 2016-06-03 2019-01-25 芯海科技(深圳)股份有限公司 一种压力触控设备的灵敏度一致性校准方法
TWI597635B (zh) * 2016-08-18 2017-09-01 仁寶電腦工業股份有限公司 觸控顯示裝置之組裝結構及其組裝方法
CN107765765B (zh) * 2016-08-18 2020-03-20 仁宝电脑工业股份有限公司 触控显示装置的组装结构及其组装方法
KR102606498B1 (ko) * 2016-08-29 2023-11-27 엘지전자 주식회사 이동 단말기
KR101956432B1 (ko) * 2016-11-03 2019-03-08 현대자동차주식회사 터치입력장치
KR20180062851A (ko) 2016-12-01 2018-06-11 삼성전자주식회사 전자 장치 및 전자 장치 제어 방법
WO2018148510A1 (en) 2017-02-09 2018-08-16 Nextinput, Inc. Integrated piezoresistive and piezoelectric fusion force sensor
EP3580539A4 (en) 2017-02-09 2020-11-25 Nextinput, Inc. INTEGRATED DIGITAL FORCE SENSORS AND RELATED METHOD OF MANUFACTURING
JP6748020B2 (ja) * 2017-04-10 2020-08-26 ニッタ株式会社 判定システム及び判定プログラム
US11221263B2 (en) 2017-07-19 2022-01-11 Nextinput, Inc. Microelectromechanical force sensor having a strain transfer layer arranged on the sensor die
US11423686B2 (en) 2017-07-25 2022-08-23 Qorvo Us, Inc. Integrated fingerprint and force sensor
WO2019023552A1 (en) 2017-07-27 2019-01-31 Nextinput, Inc. PIEZORESISTIVE AND PIEZOELECTRIC FORCE SENSOR ON WAFER AND METHODS OF MANUFACTURING THE SAME
US10386939B2 (en) * 2017-09-07 2019-08-20 Dexin Electronic Ltd. Mouse
US11579028B2 (en) 2017-10-17 2023-02-14 Nextinput, Inc. Temperature coefficient of offset compensation for force sensor and strain gauge
US11385108B2 (en) 2017-11-02 2022-07-12 Nextinput, Inc. Sealed force sensor with etch stop layer
US11874185B2 (en) 2017-11-16 2024-01-16 Nextinput, Inc. Force attenuator for force sensor
US10725574B2 (en) * 2018-01-02 2020-07-28 Stmicroelectronics Asia Pacific Pte Ltd Methods and techniques for correcting pressure sensor data in the presence of abnormal pressure sensor readings
US10962427B2 (en) 2019-01-10 2021-03-30 Nextinput, Inc. Slotted MEMS force sensor
US11537229B2 (en) * 2019-01-17 2022-12-27 Beijing Taifang Technology Co., Ltd. Touch pad pressure detection method and apparatus, storage medium and computer device
JP2021089567A (ja) * 2019-12-04 2021-06-10 アルパイン株式会社 押下検出装置および押下検出方法
TWI768758B (zh) * 2021-03-10 2022-06-21 群光電子股份有限公司 觸控感測裝置與觸控感測方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142429A (ja) * 1982-02-18 1983-08-24 Hitachi Ltd 加重検知型座標入力装置の座標検出方法
JPH05298013A (ja) * 1992-04-24 1993-11-12 Toshiba Corp 感圧式座標入力装置
JP2008046817A (ja) * 2006-08-14 2008-02-28 Alps Electric Co Ltd 表示入力装置及びこれを用いた電子機器
JP2009110248A (ja) * 2007-10-30 2009-05-21 Seiko Epson Corp タッチパネル、表示装置、電子機器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228168B2 (ja) * 1984-12-21 1990-06-21 Nippon Denki Hoomu Erekutoronikusu Kk Tategatazahyonyuryokusochi
DE69232553T2 (de) * 1991-05-31 2002-12-05 Koninkl Philips Electronics Nv Gerät mit einer Mensch-Maschine-Schnittstelle
JP2689900B2 (ja) 1994-04-27 1997-12-10 日本電気株式会社 抵抗膜接触型タッチパネル制御装置
JPH10198502A (ja) * 1997-01-07 1998-07-31 Matsushita Electric Ind Co Ltd 座標位置入力装置
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
JPH11355617A (ja) 1998-06-05 1999-12-24 Fuji Photo Film Co Ltd 画像表示器付きカメラ
JP2000066626A (ja) * 1998-08-18 2000-03-03 Minolta Co Ltd 立体表示装置
US6822635B2 (en) * 2000-01-19 2004-11-23 Immersion Corporation Haptic interface for laptop computers and other portable devices
US7183948B2 (en) * 2001-04-13 2007-02-27 3M Innovative Properties Company Tangential force control in a touch location device
US6995752B2 (en) * 2001-11-08 2006-02-07 Koninklijke Philips Electronics N.V. Multi-point touch pad
CA2412243C (en) 2001-11-23 2007-03-20 Research In Motion Limited Keyboard assembly for a mobile device
US7746325B2 (en) * 2002-05-06 2010-06-29 3M Innovative Properties Company Method for improving positioned accuracy for a determined touch input
US7656393B2 (en) * 2005-03-04 2010-02-02 Apple Inc. Electronic device having display and surrounding touch sensitive bezel for user interface and control
DE202004008642U1 (de) * 2004-05-27 2005-09-29 Kennametal Inc. Fräswerkzeug
JP2006039745A (ja) 2004-07-23 2006-02-09 Denso Corp タッチパネル式入力装置
US8169410B2 (en) * 2004-10-20 2012-05-01 Nintendo Co., Ltd. Gesture inputs for a portable display device
US20060181521A1 (en) * 2005-02-14 2006-08-17 Atrua Technologies, Inc. Systems for dynamically illuminating touch sensors
JP2006302184A (ja) * 2005-04-25 2006-11-02 Sony Ericsson Mobilecommunications Japan Inc 情報入力装置
JP2006345209A (ja) * 2005-06-08 2006-12-21 Sony Corp 入力装置、情報処理装置、情報処理方法、及びプログラム
US7331245B2 (en) 2005-11-22 2008-02-19 Avago Technologies Ecbu Ip Pte Ltd Pressure distribution sensor and sensing method
US8786554B2 (en) * 2006-07-10 2014-07-22 Atmel Corporation Priority and combination suppression techniques (PST/CST) for a capacitive keyboard
JP2008281616A (ja) 2007-05-08 2008-11-20 Seiko Epson Corp 液晶装置及び電子機器
US20100123686A1 (en) * 2008-11-19 2010-05-20 Sony Ericsson Mobile Communications Ab Piezoresistive force sensor integrated in a display
US8294047B2 (en) * 2008-12-08 2012-10-23 Apple Inc. Selective input signal rejection and modification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142429A (ja) * 1982-02-18 1983-08-24 Hitachi Ltd 加重検知型座標入力装置の座標検出方法
JPH05298013A (ja) * 1992-04-24 1993-11-12 Toshiba Corp 感圧式座標入力装置
JP2008046817A (ja) * 2006-08-14 2008-02-28 Alps Electric Co Ltd 表示入力装置及びこれを用いた電子機器
JP2009110248A (ja) * 2007-10-30 2009-05-21 Seiko Epson Corp タッチパネル、表示装置、電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2423790A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054462A (ja) * 2011-09-01 2013-03-21 Kyocera Corp 入力装置
WO2013041946A1 (en) * 2011-09-22 2013-03-28 Toyota Jidosha Kabushiki Kaisha Input apparatus and input apparatus processing method
JP2013143099A (ja) * 2012-01-12 2013-07-22 Shoei:Kk タッチパネル
JP2013156895A (ja) * 2012-01-31 2013-08-15 Fuji Soft Inc タッチパネルのタッチ位置補正処理方法及びプログラム
JP2013239070A (ja) * 2012-05-16 2013-11-28 Fujitsu Ten Ltd タッチパネル装置、接触位置を検出する方法、及びプログラム
JP2013250726A (ja) * 2012-05-31 2013-12-12 Fujitsu Ten Ltd タッチパネル装置、検出方法、及びプログラム
JP2014004220A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004221A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004223A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004222A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004224A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014004218A (ja) * 2012-06-26 2014-01-16 Kyoraku Sangyo Co Ltd 遊技機
JP2014075075A (ja) * 2012-10-05 2014-04-24 Hioki Ee Corp 電子機器および測定装置
JP2015533000A (ja) * 2012-10-26 2015-11-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated ディスプレイ上で編集可能なハンドライティングをキャプチャするためのシステムおよび方法
JP2015537321A (ja) * 2012-12-13 2015-12-24 ダヴ 触覚制御インタフェース
CN103019449A (zh) * 2012-12-24 2013-04-03 江苏物联网研究发展中心 基于压力传感器的三维多点式触摸屏
CN103019449B (zh) * 2012-12-24 2016-08-03 江苏物联网研究发展中心 基于压力传感器的三维多点式触摸屏
JP5537717B1 (ja) * 2013-08-09 2014-07-02 株式会社フジクラ 電子機器
JP2015035132A (ja) * 2013-08-09 2015-02-19 株式会社フジクラ 電子機器
JP2015060251A (ja) * 2013-09-17 2015-03-30 株式会社フジクラ 電子機器及び電子機器の制御方法
JP5567727B1 (ja) * 2013-09-17 2014-08-06 株式会社フジクラ 電子機器及び電子機器の制御方法
JP2015103132A (ja) * 2013-11-27 2015-06-04 京セラドキュメントソリューションズ株式会社 表示入力装置およびそれを備えた画像形成装置
JP2016224895A (ja) * 2015-06-03 2016-12-28 群光電子股▲ふん▼有限公司 カーソル制御装置及び方法
JP2020024809A (ja) * 2018-08-06 2020-02-13 ミネベアミツミ株式会社 二次電池の劣化判定システム及び劣化判定方法
WO2020031900A1 (ja) * 2018-08-06 2020-02-13 ミネベアミツミ株式会社 二次電池の劣化判定システム及び劣化判定方法
US11467221B2 (en) 2018-08-06 2022-10-11 Minebea Mitsumi Inc. Degradation-determination system and method for determining degradation of secondary battery
US11592949B2 (en) 2019-11-27 2023-02-28 Mitsubishi Electric Corporation Touch panel built-in display with detection of pressed state in the peripheral region

Also Published As

Publication number Publication date
JP5183801B2 (ja) 2013-04-17
CN104035720B (zh) 2017-04-12
CN104035630B (zh) 2017-04-12
CN104035629A (zh) 2014-09-10
CN104035720A (zh) 2014-09-10
CN104035630A (zh) 2014-09-10
CN102414647A (zh) 2012-04-11
US20120032907A1 (en) 2012-02-09
CN102414647B (zh) 2014-11-12
US9046956B2 (en) 2015-06-02
EP2423790A4 (en) 2013-12-04
EP2423790A1 (en) 2012-02-29
JPWO2010122824A1 (ja) 2012-10-25
CN104035629B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5183801B2 (ja) 位置入力装置
US8279176B2 (en) Mouse with improved input mechanisms using touch sensors
US10444040B2 (en) Crown with three-dimensional input
US20180101274A1 (en) Portable multi-touch input device
US8786568B2 (en) Disappearing button or slider
US20150084885A1 (en) Portable electronic device with display modes for one-handed operation
US20120227006A1 (en) Configurable input device
US20060077179A1 (en) Keyboard having automatic adjusting key intervals and a method thereof
JP5855996B2 (ja) 端末装置
TW201104523A (en) Modular touch control assembly and electronic device having the same
US20180011561A1 (en) Information processing apparatus, input apparatus, method of controlling information processing apparatus, method of controlling input apparatus, and program
KR20090003695A (ko) 압력센서를 이용한 손목시계형 이동통신 단말기와 그의사용자 입력 수신방법
US10459564B2 (en) Touch control system and method
US20080128179A1 (en) Method for controlling input portion and input device and electronic device using the method
US7502012B2 (en) Input device and personal computer
US20060240872A1 (en) Electronic device and method for operating the same
KR100802456B1 (ko) 고정형 마우스
JP6451671B2 (ja) 入力装置および入力方法
JP5955912B2 (ja) ポインティング・デバイスおよび携帯式コンピュータ。
US11747227B2 (en) Electronic device including force key structure
JP2006246387A (ja) 表示装置
US20200249766A1 (en) Capacitive touch enabled key with a corresponding tactile button
US20230111346A1 (en) Touch Control System And Method
JP5226735B2 (ja) 回転ボール型入力デバイスおよび電子機器
JP2000242409A (ja) ポインティングデバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017590.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510243

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13264438

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010766884

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE