CA2136790C - Solar battery module and passive solar system using the solar cell - Google Patents

Solar battery module and passive solar system using the solar cell

Info

Publication number
CA2136790C
CA2136790C CA002136790A CA2136790A CA2136790C CA 2136790 C CA2136790 C CA 2136790C CA 002136790 A CA002136790 A CA 002136790A CA 2136790 A CA2136790 A CA 2136790A CA 2136790 C CA2136790 C CA 2136790C
Authority
CA
Canada
Prior art keywords
solar cell
roof
crystal semiconductor
semiconductor elements
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002136790A
Other languages
French (fr)
Other versions
CA2136790A1 (en
Inventor
Kimitoshi Fukae
Masahiro Mori
Yuji Inoue
Fumitaka Toyomura
Shigenori Itoyama
Takashi Ohtsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CA2136790A1 publication Critical patent/CA2136790A1/en
Application granted granted Critical
Publication of CA2136790C publication Critical patent/CA2136790C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/36Connecting; Fastening
    • E04D3/366Connecting; Fastening by closing the space between the slabs or sheets by gutters, bulges, or bridging elements, e.g. strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S136/00Batteries: thermoelectric and photoelectric
    • Y10S136/291Applications

Abstract

A solar cell module in which the reduction in conversion efficiency is small, and a passive solar system using the solar cell module. The solar cell module has a solar cell covered with a filler. A back reinforcement member, the filler and a back insulating member larger than the solar cell are superposed in this order on the non-light-receiving side of the solar cell. The back insulating member has openings corresponding to pierced portions of the solar cell module at which the solar cell module is affixed.
A greater amount of clean energy is obtained with the system. The solar cell is used without any additional base to limit the reduction in the conversion efficiency of the solar cell.

Description

TITLE OF THE INVENTION
SOLAR BATTERY MODULE AND PASSIVE
SOLAR SYSTEM USING THE SOLAR CELL
BACKGROUND OF THE INVENTION
Field of the Invention The present invention relates to solar battery module easy to install, specifically to a solar battery module for use in a passive solar system in which solar heat energy is utilized by being converted into a heated flow of a thermal medium, particularly air.
Description of the Related Art People in many regions in the world are now becoming acutely aware of environmental problems. In particular, mankind has strong apprehensions about the global warming phenomenon due to exhaust of C02. There is, therefore, an increasing demand for safe clean energy sources. It can be 2 0 presently said that a solar battery using a photoelectric conversion element is one of promising clean energy sources because it is safe and easy to handle.
There are various types of solar batteries, such as:
(1) single crystal silicon solar cell, 2 5 (2) Polycrystal silicon solar cell _136794 (3) amorphous silicon solar cell, (4) copper-indium selenide solar cell, and (5) chemical compound solar cell.
Recently, thin-film crystal silicon solar cell, chemical compound solar cell and amorphous silicon solar cell among such cell have been studied and developed in various aspects because they can be formed of large-area elements at a comparatively low cost.
Alternatively, Japanese Patent Publication No.
48299/1991 discloses a passive solar system as a solar system for utilizing clean energy, in which solar heat is collected by using a roof surface and is utilized for floor heating, hot-water supply and the like. Fig. 8 shows an example of such a passive solar system, i.e., an air-heating ZS type passive solar system. In the solar system shown in Fig. 8, fresh air enters a vent layer 804 formed on a roof board 803 through an outside air inlet 801 formed at the edge of an eaves and rises naturally and slowly toward the ridge of a roof while becoming warmer by receiving solar 2 0 heat radiated to a roof surface through heat collecting metallic roofing plates 802. This warm air is supplied to a space formed under a floor via an air duct 807 by a fan 806 to heat the entire room. The vent layer 804 and the air duct 807 are covered with a heat insulating material 805 in 2 5 order to prevent heat from escaping.

_2136790 The above-described air-heating type passive solar system utilizes solar heat as clean energy. However, the total energy utilized by it cannot be said to be obtained only from clean energy sources because it is necessary to use power from a power line for the blower fan and a control when no heat is collected. Therefore, a method of using a solar cell, which is one of the existing clean energy sources, as a power source of the fan in the above-described system has been proposed. However, if the solar cell is 1~ mounted on the roof in an area away from the place for shingles or roof plates, it is necessary to increase the area of the roof. In the case where the roof area is restricted, it is necessary to mount the solar cell in a different place. In such a case, an additional base for mounting the solar cell is required. In consideration of this problem, applicants of the present invention have proposed a solar system in which a resin-molded type solar cell module, such as that shown in Figs. 9(a) and 9(b), exhibiting more effective release of heat to the air in the 2 0 vent layer is used be place of the metallic heat collecting plate.
Figs. 9(a) and 9(b) illustrate an example of a solar system proposed by the applicants of the present invention.
A solar cell module is mounted using nails on roofing 2 5 members. This mounted structure is shown as an example in contrast to the conventional art and the present invention.
Fig. 9(a) is a top-side perspective view and Fig. 9(b) is a cross-sectional view taken along the line 9b-9b' of Fig.
9(a). The drawings illustrate a solar cell 901, a surface S cover member 902, a back insulating member 903, a back reinforcement member 904 which serves as a heating collecting surface, a filler member 905, roofing member 906 which also serves as a spacer, and nails 907. As illustrated, the solar cell module can be easily fixed on a roof by being nailed or stapled in a non-generating place.
Thus, it is possible to mount the solar cell module on the roof without requiring a large change in the conventional architecture.
The solar system of this comparative example proposed 1S by the applicant of the present invention, however, presents the problem of a possibility of the initial characteristics of the solar cell module being changed after using over a long period of time, i.e., about 20 years.
It is known, however; that the conversion efficiency of 2 0 a solar cell is reduced if the ambient temperature is increased. If a solar cell is placed on a roof, and is kept at a high temperature, the photo-electric conversion efficiency is considerably reduced. In such a case, it is necessary to cool the solar cell to limit the reduction in 2 S conversion efficiency.

_2136790 SUMMARY OF THE INVENTION
An object of the present invention is to provide a solar cell module which has improved long-term reliability S of use when maintained in a fixed state, ensuring utilization of totally clean energy in an air heating type passive solar system, which can be used without requiring additional base, and which is capable of limiting the reduction in conversion efficiency due to heat.
The inventors have made various studies to achieve this object and have found that a solar cell as described below is the most preferred.
According to the present invention, a solar cell module is provided wherein a solar cell is covered with a filler, the solar cell module comprising a lamination in which a back reinforcement member, the filler and a back insulating member larger than the solar cell are superposed in this order on the non-light-receiving side of the solar cell, the back insulating member having an opening corresponding to at 2 0 least one pierced portion for fixing the solar cell module.
There is also provided a passive solar system having the thus-constructed solar cell module.
According to a further aspect of the present invention, there is also provided a passive soloar system having the 2 5 above-described solar cell module. Such passive solar _2136790 system is one in which a vent layer is formed between a roof board and a roofing plate provided over the roof board and in which solar heat absorbed through the roofing plate is converted into a heated air flow. The solar system comprises a solar cell module having a solar cell covered with a filler, a back reinforcement member and a back insulating member larger than said solar cell, said back reinforcement layer, said filler and said back insulating member being superposed in this order on the non-light receiving side of the solar cell, and the back insulating member having an opening corresponding to at least one pierced portion for accommodating a fixing means for affixing the solar cell module.-According to the solar cell module of the present invention, the advantages described below can be expected.
(1) Deterioration of the laminated members at a pierced position can be decreased, so that the solar cell module has improved long-term reliability.
(2) Heated air can be circulated by using a fan operated by 2 0 generated solar cell power, thereby making it possible to use larger amount of clean energy.
(3) If the solar cell generates power larger than that required to drive the fan and other components, surplus power can be utilized for other purposed (commercial power 2 5 etc,) by being supplied through a power converter.

(4) The solar cell can be used without requiring an additional base.
(5) The reduction in the conversion efficiency of the solar cell due to heat can be lessened.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1(a) is a schematic diagram showing the construction of a passive solar system using a solar cell module in accordance with the present invention;
Fig. 1(b) is a schematic cross-sectional view of the solar cell module taken along the line 1b-1b' of Fig. 1(a);
Fig. 1(c) is a structural cross-sectional view of the solar cell module of the present invention;
Fig. 1(d) is a diagram showing a bent state of the solar cell module with a roofing member for use in the passive solar system in accordance with the present invention;
Fig. 2 is a schematic cross-sectional view of a solar cell suitable for use in the solar cell module of the 2 0 present invention;
Fig. 3(a) is a plan view an example of the solar cell module of the present invention;
Fig. 3(b) is a schematic cross-sectional view of the solar cell module taken along the line 3b-3b' of Fig. 3(a);
2 5 Fig. 4 is a cross-sectional view of a step in the _8_ process of manufacturing the solar cell module of the present invention;
Fig. 5 is a schematic cross-sectional view of a suitable shape of the solar cel module of the present invention;
Fig. 6 is a schematic cross-sectional view of an example of a passive solar system using the solar cell module of the present invention;
Fig. 7(a) is a schematic diagram of an example of the solar cell module of the present invention and a passive solar system sing the solar cell module;
Fig. 7(b) is a cross-sectional view taken along the line 7b-7b' of Fig. 7(a);
Fig. 7 (c) is a top view of Fig. 7 (a) ;
Fig. 8 is a diagram of an example of an air heating type passive solar system;
Fig. 9(a) is a schematic diagram of an example of a solar cell module shown for comparison with the present invention;
2 0 Fig. 9(b) is a cross-sectional view taken along the line 9b-9b' of Fig. 9(a);
Fig. 10 is a graph showing the relationship between insulation leaks and the distance from the solar cell as the result of an experiment conducted for the present invention;
2 5 and _2136790 Fig. 11 is a graph showing the relationship between the average conversion efficiency/the initial average conversion efficiency and the opening distance as the result of an experiment conducted for the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The inventors conducted an experiment in which a solar cell module fixed directly on a roof member by being nailed as shown in Figs. 9(a) and 9(b) was used under conditions of radiation-rain cycles, and the external appearance and a cross section of the solar cell module were thereafter examined. The result of this experiment showed crack lines formed in the back insulating member 903 around nails 907, and the interfacial surfaces of the back insulating member 903 and the filler 905 separated partially from each other.
It was found that during outdoor use the laminated members were exposed to external actions such as to be stressed at the nailed positions by forces applied through the nails, and that cracking and film separation occurred particularly 2 0 in the back insulating member 903 by stresses due to forces applied through the nails according to environmental factors and by stresses caused in the filler 905 and the back insulating member 903 by the nails, so that water easily penetrated to the back insulating member. It is thought (as 2 5 seen in Figs. la-ld) that in the case of also using roofing plate 107 as a heat collecting surface metal, the photo-electric conversion efficiency and the insulation withstand voltage are seriously reduced because the solar cell module is heated at a high temperature in a high-humidity condition through vent layer 105. The same problem was also encountered, for example, in a case where through holes were formed in the solar cell module and where the solar cell module was fixed with bolts and nuts passed through the through holes.
Another experiment was conducted to examine the influence of openings formed in pierced portions of the back insulating member 903 through which nails 907 are passed, and the result of this experiment was as shown in Fig. 10.
Fig. 10 shows the relationship between insulation leaks of the solar cell module and the distance between the ends of the solar cell 101 and the back insulating member 109 (hereinafter referred to as "the distance from the solar cell"). Three samples were tested with respect to each point and the result of the test is represented by average 2 0 values .
Each test sample was made by laminating the members in the order of roofing plate 107, filler 110, back insulating member 109, filler 110, solar cell 101, filler 110 and surface cover member 108 and by melting ethylene-vinyl 2 5 acetate copolymer (EVA) provided as the filler at 150 °C for 30 minutes using a vacuum laminater (not shown). A zinc-coated steel plate (a product from Daido Steel Sheet Corp.
under the trade name of TAIMACOLOR GL) was used as roofing plate 107. Nylon (a product from Du Pont under the trade name of DARTEK) was used as back insulating material 109. A
fluoro-carbon resin (tetrafluoroethylene, a product from Asahi Glass Co., Ltd. under the trade name of AFLEX) was used as surface cover member 108. The test was conducted by forming the soloar cell modules with vent layers in accordance with the structure shown in Fig. 1.
The plus sign of the distance between the ends of solar cell 101 and back insulating member 109 on the plus side denotes that the back insulating member 109 distance is larger than the distance of the solar cell 101 while the minus sign denotes that the back insulating member 109 distance is smaller than the distance of the solar cell 101.
The members were laminated under the same conditions with respect to the four sides of solar cell 101.
The insulation leak test was conducted in such a manner 2 0 that each solar cell module was kept in an environment of 85°C and 85 %RH for 500 hours, and a maximum leak current was measured during application of a voltage of 2,200 V to the solar cell module for one minute within 2 minutes immediately after the time when the solar cell module was 2 5 taken out. Measuring terminals were connected between short-circuited plus and minus portions of the solar cell module and a portion of the roofing plate (zinc-coated steel plate) from which tl~e coating was removed. Measurement was also performed by inverting the polarity of the applied voltage, and a larger maximum leak current was indicated in Fig. 10.
In the result shown in Fig. 10, the leak current increases abruptly when the distance from the solar cell 101 becomes minus. That is, it can be understood that the withstand insulating effect of the solar cell module is insufficient if no back insulating member 109 is provided between some portions of the solar cell 101 and the roofing plate 107. Conversely, it is considered that if the distance is plus 1 mm or more, the withstand insulating effect can be maintained at a sufficiently high level.
Fig. 11 shows the relationship between the minimum distance between the ends of the back insulating member in the solar cell module and the ends of openings through which nails, screws or staples 111 are driven to fix the solar 2 0 cell module (hereinafter referred to as "opening distance") and the rate of reduction in the conversion efficiency of the solar cell from the value before a weatherproof test to the value after the weatherproof test. The openings were formed with a distance of 1 mm or more from the solar cell 2 5 considering the result showing in Fig. 10. The weatherproof 213~~90 test was made by preparing three test samples with respect to each of different opening distance values and by using a sunshine weather meter having operating conditions: a temperature of 40 to 50°C on a black panel, a xenon lamp output of 1.5 kW, a wavelength range of 300 to 800 nm, irradiation intensity of 1,425 W/m2, and 50/50 bright-dark cycles. Changes in conversion efficiency were measured after 1,000 hour testing.
The rate at which the conversion efficiency of the solar cell module was reduced by the weatherproof test was calculated by (the average conversion efficiency after the weatherproof test)/(the initial average conversion efficiency). When the rate is l, there is no reduction.
From the result shown in Fig. 11, it can be understood that when the opening distance is 5 mm or more, the changes in conversion efficiency are not substantially large. It is thought that with respect to the opening distance of 5 mm or more, that is, when nails 111 were excessively close to the back insulating member, fissures or cracks were formed in 2 0 the back insulating member due to stresses at nailed fixed portions after the weatherproof test, and that in this situation water could penetrate easily from the outside to the back insulating member, thereby reducing the conversion efficiency of the solar cell module.
2 5 It was understood from this test that each of the distances from the solar cell and the opening distance bears in a certain relationship with the performance of the solar cell module.
Referring to Figs. 1(a) through 1(d), a solar cell S module in accordance with the present invention includes a photoelectric conversion element, i.e., a solar cell 101, a spacer 102, a core member 103, a roof board 104, a vent layer 105, caps 106 nailed at 111, roofing plates 107, and a solar cell module which is integrally formed on each roofing plate 107, and which is composed of a solar cell 101, a surface cover member 108 having a roughened surface, a back insulating member 109 and a filler 110. The back insulating member 109 has openings 112 through which nails or the like are passed. A power connection cord 113 is connected to the 1S solar cell. As shown in Fig. 1(c), the members of the solar cell module are superposed one on another in such a manner as to sandwich the solar cell 101 and are enclosed in a laminated structure with a resin. Thereafter, opposite end portions of the solar cell module are bent so as to extend 2 0 vertically upwardly, as shown in Fig. 2(d). Then, the roofing plate 107 integrally combined with the solar cell module which has been worked by bending is fitted and fixed on the spacers 102 and adjacent surfaces of core member 103, thereby forming vent layer 105 between the roof board 104 2 S and the roofing plate 107. Further, caps 106 are set in such a manner as to hold the tops of core members 103 and the vertical bent portions of the roofing plates 107 provides: in this manner. Finally, the vertical bent portions of the solar cell module and the caps are fixed to core member 103 with screws, nails or staples 111.
Power from each solar cell 101 is supplied to a load (not shown) via connection cord 113.
Solar Cell 101 Any solar cell or photoelectric conversion element may be used in accordance with the present invention. However, a flexible solar cell is preferred. For example, a solar cell having a semiconductor photoactive layer formed as a photoelectric conversion member on an electroconductive base may be used. Fig. 2 is a schematic cross-sectional view of an example of such a solar cell. The structure shown in Fig. 2 includes an electroconductive base 201, a reflecting layer 202 for reflecting light not absorbed by a semiconductor photbactive layer, semiconductor photoactive layer 203, a transparent electroconductive layer 204 for 2 ~ improving the current collecting efficiency of the semiconductor photoactive layer, and current collecting electrodes 205.
The electroconductive base 201 may serve both as a base for a photovoltaic element and as a lower electrode. The 2 S material of the electroconductive base 201 may be silicon, ~13679~0 tantalum, molybdenum, tungsten, stainless steel, aluminum, copper, titanium, a carbon sheet, a lead-plated steel plate, a resin film or a ceramic on which an electroconductive layer is formed. If light is incident on the electroconductive base side, the electroconductive base 201 is formed of a transparent material. A metallic layer, metallic oxide layer or a lamination of a metallic layer and a metallic oxide layer may be formed as reflecting layer 202 on the electroconductive base 201. For example, the l~ metallic layer may be formed of Ti, Cr, Mo, W, A1, Ag, Ni or an alloy of some of these metals, and the metallic oxide layer may be formed of ZnO, Ti02, Sn02 or In203-Sn02 (ITO).
Such a metallic layer or metallic oxide layer may be formed by ohmic-resistance heating, electron beam deposition or 1$ sputtering.
In the semiconductor photoactive layer 203, photoelectric conversion is effected. Examples of the material of the semiconductor photoactive layer 203 are pn junction type polycrystal silicon, pin junction type 2 0 amorphous silicon, chemical compound semiconductors, such as CuInSe2, CuInS2, GaAs, CdS/Cu2S, CdS/CdTe, CdS/InP and CdTe/Cu2Te, and a lamination of some of these materials. If the material of the semiconductor photoactive layer is polycrystal silicon, the semiconductor photoactive layer may 2 5 be formed by forming molten silicon into a sheet or heat-treating non-single crystal silicon. In the case of non-single crystal and amorphous silicon, the semiconductor photoactive layer may be formed by plasma cY~amical vapor deposition (CVD) using a silane gas such as SiH4 or SiFq as a raw-material gas. In the case of a chemical compound semiconductor, the semiconductor photoactive layer may be formed by ion plating, ion beam deposition, vacuum deposition, sputtering or electrodeposition.
The transparent electroconductive layer 204 serves as an upper electrode of the solar cell. Examples of the material used to form the transparent electroconductive layer 204 are In203, Sn02, In203-Sn02 (ITO), ZnO, Ti02, Cd2Sn04, a crystalline semiconductor doped with impurity at a high concentration, and a metal through which light absorbed by the semiconductor photoactive layer 203 can pass. The transparent electroconductive layer 204 may be formed by ohmic-resistance heating deposition, sputtering, spraying, CVD or impurity diffusion.
To efficiently collect current on the transparent 2 0 electroconductive layer 204, a grid-like current collecting electrode 205 may be provided. Examples of the material of the current collecting electrode 205 are Ti, Cr, Mo, W, A1, Ag, Ni, Cu, Sn, alloys of some of these metals, and electroconductive pastes such as silver paste and carbon 2 S paste. The current collecting electrode 205 may be formed by sputtering using a mask pattern, ohmic-resistance heating, CVD, a method of depositing a metallic film over the entire surface and thereafter performing patterning by removing unnecessary portions by etching, a method of S forming a mask for a negative pattern for a grid electrode pattern and thereafter performing plating, a method of printing an electroconductive paste or a method of fixing metallic wires with an electroconductive paste. The electroconductive paste may be prepared by dispersing a fine powder of silver, gold, copper, nickel, an alloy of some of these metals or carbon in a binder polymer which is, for example, a polyester resin, an epoxy resin, an acrylic resin, an alkyd resin, polyvinyl acetate, rubber, urethane, a phenolic resin.
Examples of the methods for manufacturing the solar cell have been described. If the solar cell of the present invention is a single crystal silicon solar cell, the conversion efficiency is liable to decrease under the influence of heat since the ambient temperature during use 2 ~ of the solar cell of the present invention is high. It is known that the influence of heat upon the conversion efficiency in an amorphous silicon solar cell under a high-temperature condition is generally smaller than that in a single crystal silicon cell.
2 5 Additionally, the thickness of amorphous silicon solar cell is smaller than that of single crystal silicon solar cell. Therefore, an amorphous silicon solar cell is superior to single crystal silicon solar cell with respect to heat transfer efficiency when used in association with a roofing plate in accordance with the present invention.
The thickness of an amorphous silicon solar cell formed on a stainless steel substrate can be reduced to about 0.1 mm. In such a case, the amount of filler in the solar cell can be reduced. Accordingly, the total thickness of the l~ roofing plate integrally combined with the solar cell module can be reduced, thus achieving an improvement in heat transfer efficiency. Such a solar cell is flexible because it is formed on a stainless steel substrate. Therefore, an unnecessarily large stiffness of the roofing plate is not required. Thus, the thickness of the roofing plate can be reduced and, accordingly, a further improvement in heat transfer efficiency can be achieved.
It can be understood that an amorphous silicon solar cell formed on a stainless steel substrate is preferred as 2 0 the solar cell of the present invention.
Opposite end portions of the roofing plate are bent vertically upwardly so as to be capped for flashing.
Accordingly, it is preferable to shape the roofing plate by bending its opposite end portions vertically upwardly.
2 5 Roof Board 104 Roof board 104 is used as a backing for roofing.
Required qualities of roof board 104 are a property of withstanding a local load caused by a worker walking on the roof board, water resistance and heat resistance. Wood, mortar or cement is ordinarily used as a material for such a roof board.
Cap 111 Caps 111 are used for fixing the roofing plate 107 on the core wood 103 as well as for flashing. The material of caps 111 is, for example, a metallic member such as a zinc-coated steel plate processed to have an insulating property.
spacer 102 Spacers 102 are fixed on roof board 104 and roofing plates 107 are placed on the spacers 102 to maintain the vent layer of the passive solar system. Wood is preferably used as the material of the spacers 102.
Core Member 103 Core members 103 are fixed on spacers 102 and roofing plates 107 are fixed to core wood 103 with nails 111, 2 0 staples or bolts. Wood is preferably used as the material of core members 103.
Materials laminated to form the solar cell module of the present invention will now be described.
surface Cover Member 108 2 5 Required properties of the surface cover member 108 are 213fi790 transparency, weather resistance and a property of repelling a contamination. If glass is used as the material of the surface cover member 108, the thickness of roofing plate 107 including the solar cell module may become so large that the heat transfer efficiency is considerably reduced, and the glass is easily broken by an external impact. Therefore, a weatherproof transparent film of an organic resin is preferably used as the material of the surface cover member 108. A surface of the surface cover member 108 may be roughened to reduce surface reflection of incident light so that the light utilization efficiency of the solar cell is improved. Examples of the material of the surface cover member 108 are film of a fluorocarbon resin such as polyethylene tetrafluoroethylene (ETFE), polyethylene 1$ trifluoride or polyvinyl fluoride. The surface to be bonded to filler 110 may be processed by corona discharge so that filler 110 can adhere to it easily. To improve the heat resistance of a fluoro-carbon resin used to form the surface cover member, an antioxidant may be added.
2 0 Filler 110 Required properties of filler 110 are weather resistance, thermoplasticity, a heat-bonding property and transparency. Examples of the material of filler 110 are transparent resins such as ethylene-vinyl acetate copolymer 2 S (EVA), a butyral resin, a silicon resin, an epoxy resin, a fluorinated polyimide resin and an acrylic resin. The filler 110 material can be cross-linked by adding a~
crosslinker. Preferably, an ultraviolet absorber is also added to limit photo-degradation.
Back Insulatina member 109 Back insulating member 109 is used to maintain electrical insulation between solar cell 101 and the outside and between solar cell 101 and roofing plate 107. In the case of using roofing plate 107 as a heat collecting surface metal as in the present invention, it is necessary for the solar cell module to have an improved electrical insulation effect in comparison with ordinary solar cell modules because the solar cell module is used in a high-temperature high-humidity condition. The filler 110 itself has a 1S certain insulating property. However, there is a risk of occurrence of short-circuit between the solar cell 101 and the outside of between the solar cell 101 and the back reinforcement member 107 at a small-thickness portion or a pin hole portion, which is considered as a serious defect in 2 0 the case of the conventional art. The back insulating member 109 is used to prevent such short-circuit.
If a portion of filler 110 at the end of solar cell 101 is not sufficiently degassed or the thickness thereof is excessively small in the case of an arrangement where back 2 S insulating member 109 extends only through an area immediately below the solar cell 101, then the portion can have an extremely small insulation withstand voltage.
Therefore, it is preferable to laminate back insulating member 109 through the entire area of the solar cell module.
S However, if back insulating member 109 is laminated through the entire area of the solar cell module, and if through holes are formed in spacers 102 and core members 103 for fixing the solar cell module, back insulating member 109 is liable to crack or separate at the interface on the filler at pierced positions during long-term outdoor use. This is due to stresses caused when the back insulating member is affixed with screws, nails or staples 111 in pierced portions. Accordingly, it is necessary to provide openings or through holes in the portions of back insulating member 109 at which screws, nails or staples are passed through insulating member 109 to affix the solar cell module.
The material of back insulating member 109 is, preferably, a material capable of maintaining a sufficiently high electrical insulating effect with the solar cell, 2 0 having improved long-term durability and having a flexibility such as to withstand thermal expansion and contraction. Preferable examples of such a material are nylon, polyethylene terephthalate (PET), polycarbonate, polyester, polyarylate, and polyamide.
2 5 Back Reinforcement Member 107 In the passive solar system of the present invention, back reinforcement member 107 is used as roofing plate 107, and also serves as a heat collecting plate. Required qualities of back reinforcement member 107 are heat resistance, weather resistance and stiffness. However, a bonding property is also required since there is a need to bond filler 110 for covering the solar cell. The material of back reinforcement member 107 is, for example, a metal treated to have an insulating property, such as a zinc-coated steel plate. The selection of a surface color back reinforcement member 10? is important considering the use as a solar heat collecting plate. Preferably, back reinforcement member 107 has a surface color so as to have a high solar heat collecting efficiency, e.g., black, dark blue or brown.
Opposite end portions of back reinforcement member 107 can be bent vertically upwardly and capped for flashing. It is preferable to form back reinforcement member 107 into the corresponding shape.
2 0 Method of Bending Solar Cell Module The invention does not pose any restriction on the method of bending the solar cell module. It is to be noted, however, that the surface covering member 108 tends to be damaged when it is made of a weather-resistant material such 2 5 as a fluoro-carbon resin film. Therefore, the anvil or die 213fi790 of the bending machine for bending the solar cell module is preferably made of such a material that exhibits a lesser tendency to damage the surface covering r;"tuber 108 providing the surface of the roofing plate. For instance, the anvil S may be made of a comparatively soft material such as urethane resin. The bending is performed by placing the weather-resistant film on such an anvil and then exerting a force on the roofing plate as the underlying architectural member by means of a blade pressed against the roofing plate 1 0 10~ .
The invention will be more fully understood from the following description of Examples:
Example 1 A solar cell, as an amorphous silicon (a-Si) 15 photoelectric conversion element was produced by a process which will be described with reference to Fig. 2.
An A1 layer of 5000 A thick and a Zn0 layer of 5000 A
thick were formed by sputtering in the mentioned order on a rinsed stainless steel substrate, thus forming a back 2 0 reflecting layer. Then, an a-Si layer having n conduction type was formed by plasma CVD process from a mixture gas containing SiHq, PH3 and H2, followed by formation of an a-Si layer having i conduction type by plasma CVD process from a mixture gas containing SiH4 and H2, thereafter a micro-2 S crystalline silicon (~.c-Si) layer was formed also by plasma CVD process from a mixture gas containing SiH4, BF3 and H2, thereby forming a tandem a-Si photoelectric conversion semiconductor layer 203 having a laminate structure expressed by n-layer 150 A/i layer 4000 A/p layer 100 A/n layer 100 A/i layer 800 A/p layer 100 A. Then, an In203 thin film (700 A thick), serving as the transparent electrode 204, was formed by deposition, through heating in an 02 atmosphere by resistance heating.
Then, a collecting electrode 205 was formed by pattern 1~ printing with a silver paste by means of a screen printing device, followed by drying.
The solar cell thus obtained was covered to form a solar cell module of the invention which is integrated with the roofing plate (backup member), in accordance with a process which will now be described with specific reference to Figs 3(a) and 3(b) which are a top plan view and a sectional view of the solar cell module. As will be seen from these Figures, the solar cell module has a solar cell 301, a covering member 302, a back insulating member 303, a 2 0 roofing plate 304 and a filler 305. Numeral 306 designates a bend.
As will be seen from Fig. 3(b), the back insulating member 303 was so sized that its four sides are greater than the corresponding sides of the solar cell 301. The 2 5 fabrication procedure as follows. A stack is prepared by placing one atop the other in sequential order of the roofing plate 304, a layer of filler 305, insulating film 303, another layer of filler 305, the solar cell 301 produced by the foregoing process, still another layer of filler 305 and the surface covering member 302. The stack was then heated at 150°C for 30 minutes so that the filler layers, which are made of ethylene-vinyl acetate copolymer as described later, were molten to act as bonding layers, whereby a laminate structure was obtained. During the stacking, the back insulating member was so aligned that its sides are 10 mm greater than the corresponding sides of the solar cell and A is included in the distance between the end of a nail 307 and the adjacent edge of the back insulating member 303. A zinc-coated steel sheet of 0.3 mm thick, available from Daido Steel Sheet Corp. under the trade name of TAIMACOLOR GL, with a black surface, was used as the roofing plate 304. EVA (Ethylene Vinyl Acetate copolymer) of 460 microns thick was used as the material of the filler.
A nylon available from Du Pont under the trade name of 2 0 DARTEK, 50 microns thick, was used as the material of the back insulating member. A fluoro-carbon resin film (film of ethylene tetrafluoroethylene of 50 microns thick, available from Asahi Glass Co., Ltd. in the trade name of AFLEX, was used as the material of the surface covering member.
2 S The solar cell module thus prepared was then subjected 213fi790 to bending. The bending was conducted in the manner as illustrated in Figs. 4 and 5. Namely, as the first step, the solar cell module way bent at its each end through 120°
towards the source of the incident light, as shown in Fig.
4. The solar cell module as shown in Fig. 4 was then bent at 90° towards the source of the incident light, i.e., vertically upward, at each end outside the power generating region. The bending through 120° was conducted along a marginal line which is 20 mm from extreme end of each side of the solar cell module. The bending at 90° is preferably conducted such that the height (a) of rise of each end of the module is smaller than the distance (b) between the base of the vertically upward bend and the adjacent end of the solar cell. i.e., so as to meet the condition of a < b. It is important that this condition is met, for otherwise the power generating performance is affected by shading created by the vertically upward ends of the module. Furthermore, the vertically upward bend at each end of the module was conducted along a line outside the back insulating member.
2 0 The solar cell module after the bending was then placed on a roof board to form a roof structure, as will be understood from the following description taken in conjunction with Fig. 6. Referring to this figure, the roof structure has spacers 601, core members 602, the solar cell 2 S module 603, and the roof board 605. Numeral 606 denotes 213s79o vent layer, while 607 designate nails. As the first step, spacers 601 were fixed to the roof board 605 by, for example, nails, and the core members 602 were fixed to the respective spacers 601 by nails or the like. Then, the solar cell module 603, bent in the form as shown in Fig. 5, was placed between adjacent spacers 601, such that each end portion of the module 603 rests on a shoulder or defined on each spacer 601 by the cooperating core member 602. The bending of the solar cell module had performed so that the height (a) of the vertically upward bend equals to the height (C) of the core member 602 above the level of the upper face of the spacer 601. Then caps 604 were placed such that each cap 604 clamps and covers the tops of the vertically upward bends of the adjacent solar cell modules 603. The cap 604 had been bent so as to be engageable with the bent end extremities of the solar cell modules 603.
Finally, the caps 604 and the vertically upward bends of the solar cell modules were fixed to the core members by means of nails 607. It will be seen that the back insulating 2 0 member of the solar cell module does not reach the region where the nails are driven.
Thus, a solar cell module was obtained to have a distance of plus 10 mm from the solar cell and an opening distance of 80 mm which is the smallest distance A between 2 5 the end of a nail 307 and the adjacent edge of the back insulating member 303.
Example 2 A structure was fabricated in the same manner as Example 1, except that circular regions of 10 mm radius centered at the respective pierced portions were punched out from the back insulating member, and that the solar cell module was not subjected to bending. Fig. 7(a) is a perspective view of the solar cell module of this Example, Fig. 7(b) is a sectional view taken along line 7b-7b' of Fig. 7(a) and Fig. 7(c) is a top plan view. Referring to these Figures, the structure has a solar cell 701, back insulating member 702, roofing plate 703, surface covering member 704, filler 706, spacers 707 and a roof board 708.
The circular regions formed by punching the back insulating member are denoted by 705. Numeral 709 designates nails.
The same laminating process was employed as that used in Example 1. The solar cell module was affixed by nails which were driven at the centers of the respective punched circular regions. In this example, the distance from the 2 0 solar cell was plus 80 mm and the opening distance was 10 mm.
Example 3 The same process as that used in Example 1 was employed, except that the back insulating member was sized 2 5 to have each side 1 mm greater than that of the solar cell 2136?90 and positioned such that each side thereof projects 1 mm beyond corresponding side of the solar cell, as shown in Fig. 3(a). ~.i this Example, the distance from the solar cell was plus 1 mm, while the opening distance was 89 mm.
S Example 4 The same process as that used in Example 2 was employed, except that the radius of the circular punched regions was 3 mm. In this Example, the distance from the solar cell was plus 87 mm, while the opening distance was 3 mm.
Comparative Example 1 The same process as that used in Example 1 was employed, except that the back insulating member was placed over the entire area of the solar cell in forming the laminate. In this Example, the distance from the solar cell was plus 110 mm, while the opening distance was 0 mm.
Co~arative Example 2 The same process as that used in Example 1 was employed, except that the back insulating member was so 2 ~ sized that each side thereof was 5 mm smaller than the corresponding side of the solar cell (photovoltaic device).
In this Example, the distance from the solar cell was minus 5 mm, while the opening distance was 95 mm.
(Evaluation) 2 5 The solar cell modules of Examples and Comparative Examples fabricated in accordance with the foregoing processes were subjected to tests for the purpose of evaluation of the following:
S (1) Initial insulation leakage (2) Initial conversion efficiency (3) Conversion efficiency after experiencing irradiation +
rain cycle (sunshine weather meter) (4) Reduction of conversion efficiency from initial value due to experience of the irradiation + rain cycle (5) Appearance after experiencing irradiation +
rain cycle (sunshine weather meter) Insulation leakage test was conducted by shelving each sample for 500 hours in an environment of 85°C and 85 o RH, and applying, within 2 minutes after taking the sample out of the shelving environment, a voltage of 2200 V to the solar cell module of each sample, and measuring the maximum leaking current under application of the voltage. The 2 0 voltage was applied between a point where the plus and minus electrodes of the solar cell were short-circuited and a portion of the roofing plate (zinc-coated steel sheet) where the zinc coat was peeled to expose the naked steel. The current was measured two times while inverting the polarity 2 5 of the voltage applied, and the greater value of the measured current was made of record as the maximum leak current.
The sunshine weather metering was conducted under the conditions of: the temperature on the black panel being 40 to 50°C, humidity being 65 0, xenon lamp output being 1.5 Kw, wavelength region being 300 to 800 nm, irradiation intensity being 1425 w/m2, and bright/dark cycle being 50/50.
Results and Discussion The results of measurements of the items (1), (4) and (5) above are shown in Table 1 below.

Table 1 Results of Comparison Tests Insulation Reduction Appearance After Test Leak Rate Current Example 1 5 N~A 8 o No change Example 2 6 ~.1.A 10 a No change Example 3 25 ~1A g o No change Example 4 6 N.A 8 o Small cracks occurred around the nails.

Comparative 5 ~1.A 2~ o Crack patterns were Example 1 formed around the nails to a position below the solar cell.

Comparative g0 1A

~, 15 o No change Example 2 From Table 1, it i-s understood that the solar cel $ module of Comparative Example 1 after the test showed a drastic change in appearance, due to generation of crack-like pattern in the nylon as the back insulating member. It is considered that the large reduction in the conversion efficiency exhibited by this sample is attributable to invasion by water along the cracks. The solar cell module 213679p of Comparative Example 2 also was found to be unacceptable due to too large leak current indicative of insufficiency of insulation.
The solar cell module bf Example 3 showed a comparatively large leak current. This is considered to be attributable to the fact that the size of the back insulating member approximates that of the solar cell. The solar cell of Example 4 showed cracking around the nails, though the conversion efficiency was not so much affected.
1.0 Such cracking results from too small a distance between the back insulating member and pierced portion of the solar cell module.
As will be understood from the foregoing description, the present invention offers the following advantages:
(1) Degradation of laminate materials around each pierced portion is suppressed so that the long-term reliability of the solar cell module is improved.
(2) Electrical power generated by the solar cell can be used as the power for driving a blower which efficiently 2 0 circulates air, thus realizing a non-polluting energy system.
(3) Any surplus electric power can be used as electrical power source for other device than the blower.
(4) Solar cell can be practically used without requiring 2 S any specific column or supporting structure.

(5) The heat accumulated on the solar cell due to irradiation with sunlight is carried away by air flowing through the vent layer, so that the solar cell is effectively cooled, thus preventing reduction in the conversion efficiency which otherwise may occur due to build up of heat in the solar cell.
(6) The resin used as the covering material covering the solar cell is flexible enough to cover the entire area of a roof, thus contributing to reduction in the noise produced by rain drops.
(7) The resin used as the covering material covering the solar cell is flexible enough to cover the entire area of a roof. This resin, in cooperation with the caps which provide sufficiently large air tightness, ensures improved waterproof property against rain fall.
While the present invention has been described with respect to what is presently considered to be the preferred embodiments, it is-to be understood that the invention is not limited to the disclosed embodiments. The present 2 ~ invention is intended to cover the various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (102)

1. A solar cell module in which a solar cell is covered with a filler, said solar cell module comprising:
a lamination in which a layer of said filler, an area of a back insulating member larger than that of said solar cell, another layer of said filler, and a back reinforcement member are superposed in this order on the non-light-receiving side of said solar cell, said back insulating member having at least one opening there-through corresponding to at least one pierced portion of said module for accommodating a fixing means for affixing said solar cell module to a roof.
2. A solar cell module according to claim 1, wherein the entire light incident surface of said solar cell module is covered with a surface cover member.
3. A solar cell module according to claim 2, wherein said surface cover member is a weatherproof transparent film.
4. A solar cell module according to claim 2, wherein said surface cover member is formed of at least one material selected from the group consisting of poly-ethylene tetrafluoroethylene, polyethylene trifluoride, and polyvinyl fluoride.
5. A solar cell module according to claim 1, wherein said back reinforcement member is a steel plate.
6. A solar cell module according to claim 5, wherein said steel plate is a zinc-coated steel plate.
7. A solar cell module according to claim 1, wherein said solar cell is flexible.
8. A solar cell module according to claim 1, wherein said solar cell is a non-single-crystal semiconductor solar cell formed on a stainless steel substrate.
9. A solar cell module according to claim 8, wherein said non-single-crystal semiconductor solar cell is an amorphous silicon solar cell.
10. A solar cell module according to claim 1, wherein opposite end portions of said back reinforcement member are bent.
11. A solar cell module according to claim 10, wherein the opposite end portions of said back reinforcement member are bent vertically upwardly.
12. A solar cell module according to claim 1, wherein said solar cell module is affixed at said at least one pierced portion by at least one fixing means selected from the group consisting of a nail, a bolt, and a staple.
13. A solar cell module according to claim 1, wherein said back insulating member is formed of at least one material selected from a group consisting of nylon, polyethylene terephthalate, polycarbonate, polyester, polyarylate, and polyamide.
14. A solar cell module according to claim 1, wherein said filler is formed of at least one material selected from the group consisting of ethylene-vinyl acetate copolymer (EVA), a butyryl resin, a silicon resin, an epoxy resin, a fluorinated polyimide resin, and an acrylic resin.
15. A solar cell module according to claim 1, wherein the distance between said at least one opening and said back insulating member is 5 mm or more.
16. A solar cell module according to claim 1, wherein the distance between said at least one opening and solar cell is 1 mm or more.
17. A passive solar system in which a vent layer is formed between a roof board and a roofing plate provided over the roof board, and in which solar heat absorbed through the roofing plate is converted into a heated air flow, said solar system comprising:
a solar cell module having a solar cell converted with a layer of filler, and an area of a back insulating member larger than that of said solar cell, another layer of said filler, and a back reinforcement member, superposed in this order on the non-light-receiving side of said solar cell, said back insulating member having at least one opening corresponding to at least one pierced portion of said module for accommodating a fixing means affixing said solar cell module to said roof board.
18. A passive solar system according to claim 17, wherein the entire light incident surface of said solar cell module is covered with a surface cover member.
19. A passive solar system according to claim 18, wherein said surface cover member is a weatherproof transparent film.
20. A passive solar system according to claim 18, wherein said surface cover member is formed of at least one material selected from the group consisting of poly-ethylene tetrafluoroethylene, polyethylene trifluoride, and polyvinyl fluoride.
21. A passive solar system according to claim 17, wherein said roofing plate is a steel plate.
22. A passive solar system according to claim 21, wherein said steel plate is a zinc-coated steel plate.
23. A passive solar system according to claim 17, wherein said solar cell is flexible.
24. A passive solar system according to claim 17, wherein said solar cell is a non-single-crystal semi-conductor solar cell formed on a stainless steel substrate.
25. A passive solar system according to claim 24, wherein said non-single-crystal semiconductor solar cell is an amorphous silicon solar cell.
26. A passive solar system according to claim 17, wherein opposite end portions of said roofing plate are bent.
27. A passive solar system according to claim 26, wherein the opposite end portions of said roofing plate are bent vertically upwardly.
28. A passive solar system according to claim 17, wherein said solar cell module is affixed at said at least one pierced portion by at least one fixing means selected from the group consisting of a nail, a bolt, and a staple.
29. A passive solar system according to claim 17, wherein said back insulating member is formed of at least one material selected from the group consisting of nylon, polyethylene terephthalate, polycarbonate, polyester, polyarylate, and polyamide.
30. A passive solar system according to claim 17, wherein said filler is formed of at least one material selected from the group consisting of EVA, a butyral resin, a silicon resin, an epoxy resin, a fluorinated polyimide resin, and an acrylic resin.
31. A passive solar system according to claim 17, wherein the distance between said at least one opening and said back insulating member is 5 mm or more.
32. A passive solar system according to claim 17, wherein the distance between said at least one opening and said solar cell is 1 mm or more.
33. A roof member comprising:
a. a roof panel formed of steel, having a bend line;
b. a photovoltaic array comprising a plurality of non-single-crystal semiconductor elements on the upper surface of said roof panel, wherein the non-single-crystal semiconductor elements are arranged to receive sunlight; and c. an insulating member between said roof panel and the non-light-receiving side of the non-single-crystal semiconductor elements, wherein said insulating member occupies an area larger than the area occupied by the non-single-crystal semiconductor elements, and whose end portion is located between said bend line and the edges of said non-single-crystal semiconductor elements.
34. A roof member according to claim 33, wherein a filler member is arranged between said photovoltaic array and said insulating member.
35. A roof member according to claim 33, wherein a filler member is arranged between said insulating member and said roof panel.
36. A roof member according to claim 33, comprising a member which covers the surface of said photovoltaic array.
37. A roof member according to claim 33, wherein said non-single-crystal semiconductor elements comprise non-single-crystal silicon.
38. A roof member according to claim 37, wherein said non-single-crystal silicon is amorphous silicon.
39. A roof member according to claim 37, wherein said non-single-crystal silicon is polysilicon.
40. A roof member comprising:
a. a roof panel formed of steel which is bent;
b. a photovoltaic array comprising a plurality of non-single-crystal semiconductor elements on the upper surface of said roof panel, wherein the non-single-crystal semiconductor elements are arranged to receive sunlight; and c. an insulating member between said roof panel and the non-light-receiving side of the non-single-crystal semiconductor elements, wherein said insulating member occupies an area larger than the area occupied by said non-single-crystal semiconductor elements, and whose end portion is located between said bent portion of said roof panel and the edge of said non-single-crystal semi-conductor elements.
41. A roof member according to claim 40, wherein a filler member is arranged between said photovoltaic array and said insulating member.
42. A roof member according to claim 40, wherein a filler member is arranged between said insulating member and said roof panel.
43. A roof member according to claim 40, comprising a member which covers the surface of said photovoltaic array.
44. A roof member according to claim 40, wherein said non-single-crystal semiconductor elements comprise non-single-crystal silicon.
45. A roof member according to claim 44, wherein said non-single-crystal silicon is amorphous silicon.
46. A roof member according to claim 44, wherein said non-single-crystal silicon is polysilicon.
47. A solar cell member comprising:
a. a steel panel having a bend line;
b. photovoltaic array comprising a plurality of non-single-crystal semiconductor elements on the upper surface of said steel panel, wherein the non-single-crystal semiconductor elements are arranged to receive sunlight; and c. an insulating member between said steel panel and the non-light-receiving side of the non-single-crystal semiconductor elements, wherein said insulating member occupies an area larger than the area occupied by the non-single-crystal semiconductor elements, and whose end portion is located between said bend line and the edge of said non-single-crystal semiconductor elements.
48. A solar cell member according to claim 47, wherein a filler member is arranged between said photovoltaic array and said insulating member.
49. A solar cell member according to claim 47, wherein a filler member is arranged between said insulating member and said roof panel.
50. A solar cell member according to claim 47, comprising a member which covers the surface of said photovoltaic array.
51. A solar cell member according to claim 47, wherein said non-single-crystal semiconductor elements comprise non-single-crystal silicon.
52. A solar cell member according to claim 51, wherein said non-single-crystal silicon is amorphous silicon.
53. A solar cell member according to claim 51, wherein said non-single-crystal silicon is polysilicon.
54. A method of manufacturing a roof member, comprising:
a. preparing a roof panel formed of steel, having a bend line;
b. placing a photovoltaic array comprising a plurality of non-single-crystal semiconductor elements on the outer surface of said roof panel so that the non-single-crystal semiconductor elements can receive sunlight; and c. placing an insulating member between said roof panel and the non-light-receiving side of said non-single-crystal semiconductor elements, wherein the insulating member occupies an area larger than the area occupied by the non-single-crystal semiconductor elements, and positioning the insulating member so that the end portions thereof are between said bend line and the edge of said non-single-crystal semiconductor elements.
55. A method of manufacturing a roof member according to claim 54, wherein a filler member is arranged between said photovoltaic array and said insulating member.
56. A method of manufacturing a roof member according to claim 54, wherein a filler member is arranged between said insulating member and said roof panel.
57. A method of manufacturing a roof member according to claim 54, comprising a member which covers the surface of said photovoltaic array.
58. A method of manufacturing a roof member according to claim 54, wherein said non-single-crystal semiconductor elements comprise non-single-crystal silicon.
59. A method of manufacturing a roof member according to claim 58, wherein said non-single-crystal silicon is amorphous silicon.
60. A method of manufacturing a roof member according to claim 58, wherein said non-single-crystal silicon is polysilicon.
61. A method of manufacturing a roof member, comprising:
a. preparing a roof panel formed of steel;
b. bending said steel panel along a bend line;
c. placing photovoltaic array having a plurality of non-single-crystal semiconductor elements on the outer surface of said roof panel so that the non-single-crystal semiconductor elements can receive sunlight; and d. placing an insulating member between said steel panel and the non-single-receiving side of said non-single-crystal semiconductor elements, wherein the insulating member occupies an area larger than the area occupied by the non-single-crystal semiconductor elements, and positioning the insulating member such that its end portions are arranged between said bend line and the edge of said non-single-crystal semiconductor elements.
62. A method of manufacturing a roof member according to claim 61, wherein a filler member is arranged between said photovoltaic array and said insulating member.
63. A method of manufacturing a roof member according to claim 61, wherein a filler member is arranged between said insulating member and said roof panel.
64. A method of manufacturing a roof member according to claim 61, comprising a member which covers the surface of said photovoltaic array.
65. A method of manufacturing a roof member according to claim 61, wherein said non-single-crystal semiconductor elements comprise non-single-crystal silicon.
66. A method of manufacturing a roof member according to claim 65, wherein said non-single-crystal silicon is amorphous silicon.
67. A method of manufacturing a roof member according to claim 65, wherein said non-single-crystal silicon is polysilicon.
68. A method of manufacturing a solar cell member comprising:
a. preparing a panel formed of steel, having a bend line;
b. placing a photovoltaic array having a plurality of non-single-crystal semiconductor elements on the outer surface of said panel so that the non single-crystal semiconductor elements can receive sunlight; and c. placing an insulating member between said panel and the non-light-receiving side of said non-single-crystal semiconductor elements, wherein the insulating member occupies an area larger than the area occupied by the non-single-crystal semiconductor elements, and positioning the insulating member so that the end portions thereof are between said bend line and the edge of said non-single-crystal semiconductor elements.
69. A method of manufacturing a solar cell member according to claim 68, wherein a filler member is arranged between said photovoltaic array and said insulating member.
70. A method of manufacturing a solar cell member according to claim 68, wherein a filler member is arranged between said insulating member and said panel.
71. A method of manufacturing a solar cell member according to claim 68, comprising a member which covers the surface of said photovoltaic array.
72. A method of manufacturing a solar cell member according to claim 68, wherein said non-single-crystal semiconductor elements comprise non-single-crystal silicon.
73. A method of manufacturing a solar cell member according to claim 72, wherein said non-single-crystal silicon is amorphous silicon.
74. A method of manufacturing a solar cell member according to claim 72, wherein said non-single-crystal silicon is polysilicon.
75. A passive solar apparatus having a solar cell member and a thermal conversion member for converting sunlight into electricity and heat, wherein said solar cell member comprises:
a. a bent steel panel;
b. a photovoltaic array having a plurality of non-single-crystal semiconductor elements on the outer surface of said steel panel, said elements are arranged to receive the sunlight; and c. an insulating member between said steel panel and the non-light-receiving side of said non-single-crystal semiconductor elements, which occupies an area larger than the area occupied by the non-single-crystal semiconductor elements, and whose end portion is positioned between said bend line and said non-single-crystal semiconductor elements.
76. A passive solar apparatus according to claim 75, wherein said thermal conversion member has a ventilation layer.
77. A passive solar apparatus according to claim 75, wherein a filler member is arranged between said photovoltaic array and said insulating member.
78. A passive solar apparatus according to claim 75, wherein a filler member is arranged between said insulating member and said roof panel.
79. A passive solar apparatus according to claim 75, comprising a member which covers the surface of said photovoltaic array.
80. A passive solar apparatus according to claim 78, wherein said non-single-crystal semiconductor elements comprise non-single-crystal silicon.
81. A passive solar apparatus according to claim 80, wherein said non-single-crystal silicon is amorphous silicon.
82. A passive solar apparatus according to claim 80, wherein said non-single-crystal silicon is polysilicon.
83. A method of insulating a passive solar apparatus on a roof, comprising preparing a passive solar apparatus having a thermal conversion member for converting sunlight into heat and a solar cell member for converting sunlight into electricity comprising:
a. a bent steel panel having a bent portion and an end portion;
b. a photovoltaic array having a plurality of non-single-crystal semiconductor elements on the outer surface of said steel panel, which are arranged to receive the sunlight; and c. an insulating member between said steel panel and the non-light-receiving side of said non-single-crystal semiconductor elements, which occupies an area larger than the area occupied by the non-single-crystal semiconductor elements, and whose end portions are arranged between said bent portion and the edge of said non-single-crystal semiconductor elements, further comprising fixing the passive solar apparatus to the roof through a portion of the steel panel which is between the bent portion and the end portion of the steel panel.
84. A method of installing a passive solar apparatus according to claim 83, wherein said thermal conversion member has a ventilation layer.
85. A method of installing a passive solar apparatus according to claim 83, wherein a filler member is set in between said photovoltaic array and said insulating member.
86. A method of installing a passive solar apparatus according to claim 83, wherein a filler member is arranged between said insulating member and said steel panel.
87. A method of installing a passive solar apparatus according to claim 83, comprising a member which covers the surface of said photovoltaic array.
88. A method of installing a passive solar apparatus according to claim 83, wherein said non-single-crystal semiconductor element comprises non-single-crystal silicon.
89. A method of installing a passive solar apparatus according to claim 88, wherein said non-single-crystal silicon is amorphous silicon.
90. A method of installing a passive solar apparatus according to claim 88, wherein said non-single-crystal silicon is polysilicon.
91. A method of installing a passive solar apparatus according to claim 83, characterized by fixing said passive solar apparatus to a roof by means of nails positioned between said bent portion and the end portion of said steel panel.
92. A method of installing a passive solar apparatus according to claim 83, comprising fixing said passive solar apparatus to a roof by means of staples positioned between said bent portion and said end portion of the steel panel.
93. A method of installing a solar cell member on a roof characterized by preparing a solar cell member having:
a. steel panel having a bent portion and an end portion;
b. a photovoltaic array having a plurality of non-single-crystal semiconductor elements on the outer surface of said steel panel, which are arranged to receive the sunlight; and c. an insulating member between said steel panel and the non-light-receiving side of said non-single-crystal semiconductor elements, which occupies an area larger than the area occupied by the non-single-crystal semiconductor elements, and whose end portions are arranged between said bent portion and the edge of said non-single-crystal semiconductor elements, and further comprising fixing the solar cell member to a roof through a portion of the steel panel which is between the bent portion and the end portion of the steel panel.
94. A method of installing a roof according to claim 93, wherein said thermal conversion member has a ventilation layer.
95. A method of installing a solar cell member according to claim 93, wherein a filler member arranged in between said photovoltaic array and said insulating member.
96. A method of installing a solar cell member according to claim 93, wherein a filler member is arranged between said insulating member and said steel panel.
97. A method of installing a solar cell member according to claim 93, comprising a member which covers the surface of said photovoltaic array.
98. A method of installing a solar cell member according to claim 93, wherein said non-single-crystal semiconductor element comprises non-single-crystal silicon.
99. A method of installing a solar cell member according to claim 98, wherein said non-single-crystal silicon is amorphous silicon.
100. A method of installing a solar cell member according to claim 98, wherein said non-single-crystal silicon is polysilicon.
101. A method of installing a solar cell member according to claim 93, comprising fixing said solar cell member to a roof by means of nails positioned between said bent portion and said end portion of the steel panel.
102. A method of installing a solar cell member according to claim 93, characterized in fixing said solar cell member to a roof by means of staples positioned between said bent portion and said end portion of the steel panel.
CA002136790A 1993-11-30 1994-11-28 Solar battery module and passive solar system using the solar cell Expired - Fee Related CA2136790C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29981993 1993-11-30
JP299819/1993 1993-11-30

Publications (2)

Publication Number Publication Date
CA2136790A1 CA2136790A1 (en) 1995-05-31
CA2136790C true CA2136790C (en) 1999-12-14

Family

ID=17877308

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002136790A Expired - Fee Related CA2136790C (en) 1993-11-30 1994-11-28 Solar battery module and passive solar system using the solar cell

Country Status (2)

Country Link
US (2) US5589006A (en)
CA (1) CA2136790C (en)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139519A (en) * 1995-11-15 1997-05-27 Canon Inc Solar cell module
US6018123A (en) * 1996-01-31 2000-01-25 Canon Kabushiki Kaisha Heat collector with solar cell and passive solar apparatus
JP3315575B2 (en) * 1996-02-07 2002-08-19 キヤノン株式会社 Solar energy conversion device, building, and temperature control method for photoelectric conversion element
JP3220934B2 (en) * 1996-07-17 2001-10-22 キヤノン株式会社 Hybrid panel using solar cell module
JPH1054118A (en) * 1996-08-08 1998-02-24 Canon Inc Solar cell module
JPH1072910A (en) * 1996-08-30 1998-03-17 Canon Inc Transverse roof panel, roof member-integrated solar battery, transverse roof joint and construction method for transverse roof
US6182403B1 (en) 1996-08-30 2001-02-06 Canon Kabushiki Kaisha Combination solar battery and roof unit and mounting method thereof
JP3825843B2 (en) * 1996-09-12 2006-09-27 キヤノン株式会社 Solar cell module
JPH10112549A (en) * 1996-10-08 1998-04-28 Canon Inc Solar battery module
JP3610178B2 (en) * 1997-02-05 2005-01-12 キヤノン株式会社 Roof and its construction method
US6075202A (en) * 1997-05-07 2000-06-13 Canon Kabushiki Kaisha Solar-cell module and process for its production, building material and method for its laying, and electricity generation system
JP3740251B2 (en) * 1997-06-09 2006-02-01 キヤノン株式会社 Manufacturing method of solar cell module
DE29714217U1 (en) * 1997-08-11 1997-10-30 Wismeth Wolfgang Connection frame for standardized solar modules
JPH11135820A (en) * 1997-08-27 1999-05-21 Canon Inc Solar battery module and reinforcing member therefor
JPH11150287A (en) * 1997-09-10 1999-06-02 Canon Inc Solar cell module, solar cell with enclosure, method for fitting enclosure with the solar cell, and solar power generating system
US6201179B1 (en) * 1997-10-03 2001-03-13 Nick Dalacu Array of photovoltaic modules for an integrated solar power collector system
JPH11193612A (en) * 1997-12-27 1999-07-21 Canon Inc Fixing member, solar battery module array, solar battery power generation system and solar battery module of work execution method of external facing material
JPH11193613A (en) * 1998-01-06 1999-07-21 Canon Inc Solar battery module and surrounding body with solar battery
JP3675218B2 (en) * 1998-04-06 2005-07-27 キヤノン株式会社 SOLAR CELL MODULE, ITS CONSTRUCTION METHOD, AND POWER GENERATION DEVICE USING THE SOLAR CELL MODULE
DE69943141D1 (en) * 1998-05-20 2011-03-03 Canon Kk Photovoltaic power generation device
US6111189A (en) * 1998-07-28 2000-08-29 Bp Solarex Photovoltaic module framing system with integral electrical raceways
US6922908B1 (en) * 1999-04-16 2005-08-02 Raul Raudales Vegetable product drying
US6201180B1 (en) * 1999-04-16 2001-03-13 Omnion Power Engineering Corp. Integrated photovoltaic system
EP1071137A3 (en) * 1999-07-21 2007-03-21 Kaneka Corporation Roofing tile having photovoltaic module to generate power
CA2350044A1 (en) * 1999-09-09 2001-03-15 Akzo Nobel Nv Hybrid roof covering element
AU3227301A (en) * 2000-02-18 2001-08-27 Bridgestone Corporation Sealing film for solar cell and method for manufacturing solar cell
DE10041271A1 (en) * 2000-08-23 2002-03-07 Thyssen Bausysteme Gmbh Roof or wall covering comprising photovoltaic solar module on self-supporting sheet metal panels, with heat-regulating system underneath
DE10052800C1 (en) * 2000-10-25 2002-08-29 Thyssenkrupp Stahl Ag roof element
GB0102595D0 (en) * 2001-02-01 2001-03-21 Virk Kuldip Smart solar
DE10142383C2 (en) * 2001-08-30 2003-07-31 Ibc Solar Ag Carrier for solar modules and their use as well as roof covering or facade
US6870087B1 (en) 2001-09-14 2005-03-22 Patrick Gallagher Assembly method and apparatus for photovoltaic module
DE10146498C2 (en) * 2001-09-21 2003-11-20 Arnold Glaswerke Photovoltaic glazing
US6912816B2 (en) * 2001-10-01 2005-07-05 Futura Solar, Llc Structurally integrated solar collector
US7178295B2 (en) * 2002-02-20 2007-02-20 Powerlight Corporation Shingle assembly
US20030154667A1 (en) * 2002-02-20 2003-08-21 Dinwoodie Thomas L. Shingle system
US6883290B2 (en) 2002-02-20 2005-04-26 Powerlight Corporation Shingle system and method
JP3690602B2 (en) * 2002-06-19 2005-08-31 株式会社オーエムソーラー協会 Pneumatic solar system
US7612283B2 (en) * 2002-07-09 2009-11-03 Canon Kabushiki Kaisha Solar power generation apparatus and its manufacturing method
US20040025932A1 (en) * 2002-08-12 2004-02-12 John Husher Variegated, high efficiency solar cell and method for making same
US6966184B2 (en) * 2002-11-25 2005-11-22 Canon Kabushiki Kaisha Photovoltaic power generating apparatus, method of producing same and photovoltaic power generating system
US7534956B2 (en) * 2003-04-10 2009-05-19 Canon Kabushiki Kaisha Solar cell module having an electric device
JP2004319800A (en) * 2003-04-17 2004-11-11 Canon Inc Solar cell module
JP2004319812A (en) * 2003-04-17 2004-11-11 Canon Inc Solar cell module with electric power converter
JP2004335885A (en) 2003-05-09 2004-11-25 Canon Inc Electronic component and manufacturing method thereof
JP2004335886A (en) * 2003-05-09 2004-11-25 Canon Inc Transformer assembly, power converter employing it, and solar power generator
US20040246087A1 (en) * 2003-05-09 2004-12-09 Canon Kabushiki Kaisha Electric component and method of producing the same
US6971939B2 (en) * 2003-05-29 2005-12-06 Ushio America, Inc. Non-oxidizing electrode arrangement for excimer lamps
JP3861154B2 (en) * 2003-09-04 2006-12-20 国立大学法人名古屋大学 Power generation method and battery
JP2005150318A (en) * 2003-11-14 2005-06-09 Canon Inc Solar cell module and its manufacturing method
JP2005175197A (en) * 2003-12-11 2005-06-30 Canon Inc Solar cell module and manufacturing method thereof
JP2005183660A (en) * 2003-12-19 2005-07-07 Canon Inc Solar cell module
JP4681806B2 (en) * 2003-12-19 2011-05-11 キヤノン株式会社 Solar cell module
US7297866B2 (en) * 2004-03-15 2007-11-20 Sunpower Corporation Ventilated photovoltaic module frame
AR062501A1 (en) * 2006-08-29 2008-11-12 Actelion Pharmaceuticals Ltd THERAPEUTIC COMPOSITIONS
US20080178923A1 (en) * 2007-01-29 2008-07-31 Lucky Power Technology Co., Ltd. Power generation diode module in roof tile
WO2008099975A1 (en) * 2007-02-13 2008-08-21 Bong Gi Kim Laminated board generating electricity by sunshine
ITBO20070094A1 (en) 2007-02-20 2008-08-21 Scienza Ind Tecnologia S R L INTEGRATED THERMAL-PHOTOVOLTAIC SOLAR PANEL FOR THE PRODUCTION OF ELECTRICITY AND HOT WATER
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US8143511B2 (en) * 2007-09-13 2012-03-27 Silicon China (Hk) Limited Texture process and structure for manufacture of composite photovoltaic device substrates
DE102008003286A1 (en) * 2008-01-05 2009-07-09 Rev Renewable Energy Ventures, Inc. Photovoltaic element, support structure and method for mounting a support structure thereto
US20090229655A1 (en) * 2008-03-13 2009-09-17 Chen-Sheng Lee Solar Cell
US20100071310A1 (en) * 2008-09-23 2010-03-25 Joe Brescia Method of Assembling Building Integrated Photovoltaic Conversion System
US8677701B2 (en) * 2008-09-25 2014-03-25 The Boeing Company Attaching solar collectors to a structural framework utilizing a flexible clip
US7947524B2 (en) * 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US20110018103A1 (en) * 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
DE102008054099A1 (en) * 2008-10-31 2010-05-20 Reichert, Heiko, Dipl.-Ing. Arrangement and procedure for the use of heat generation on photovoltaic systems within building services
US20100126087A1 (en) * 2008-11-13 2010-05-27 Joe Brescia Plank Based Photovoltaic Conversion System
DE102008058640A1 (en) * 2008-11-22 2010-05-27 Roto Frank Ag Photovoltaic unit, photovoltaic system and method for producing a photovoltaic unit
US9103563B1 (en) 2008-12-30 2015-08-11 Sunedison, Inc. Integrated thermal module and back plate structure and related methods
US20130199596A1 (en) * 2009-02-16 2013-08-08 Daniel Gabriel Van Niekerk Solar energy collection apparatus
US8732940B2 (en) * 2009-03-12 2014-05-27 Clean Energy Solutions, Inc. System and method for mounting photovoltaic panels
US8316593B2 (en) * 2009-03-18 2012-11-27 Garland Industries, Inc. Solar roofing system
US20100258163A1 (en) * 2009-04-14 2010-10-14 Honeywell International Inc. Thin-film photovoltaics
US8241943B1 (en) 2009-05-08 2012-08-14 Stion Corporation Sodium doping method and system for shaped CIGS/CIS based thin film solar cells
US8372684B1 (en) 2009-05-14 2013-02-12 Stion Corporation Method and system for selenization in fabricating CIGS/CIS solar cells
US20110209742A1 (en) * 2009-06-10 2011-09-01 Pvt Solar, Inc. Method and Structure for a Cool Roof by Using a Plenum Structure
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8859880B2 (en) * 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
FR2955705B1 (en) * 2010-01-27 2012-07-27 Suez Environnement MODULE FOR PRODUCING MIXED PHOTOVOLTAIC AND THERMAL ENERGY FROM SOLAR RADIATION, AND INSTALLATION EQUIPPED WITH SUCH MODULES
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US8142521B2 (en) * 2010-03-29 2012-03-27 Stion Corporation Large scale MOCVD system for thin film photovoltaic devices
EP2390924A1 (en) * 2010-05-26 2011-11-30 Thesan S.p.A. Building roof with rows of curved tiles alternating with strip-shaped solar modules, and sheet-metal panel for making said roof
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
WO2013022871A1 (en) * 2011-08-08 2013-02-14 E. I. Du Pont De Nemours And Company Hail resistant photovoltaic modules
CN103088760A (en) * 2011-11-04 2013-05-08 吴德滨 Solar snow retaining plate for highway
EP2925940B1 (en) * 2012-12-03 2017-06-28 Kingspan Holdings (IRL) Limited A composite insulating panel
WO2015042153A1 (en) 2013-09-17 2015-03-26 Scott Franklin Photovoltaic panel mounting rail with integrated electronics
US9985573B2 (en) * 2013-10-17 2018-05-29 Designergy Sa Building construction surface element and building construction / building construction surface arrangement and method to manufacture same
US10547270B2 (en) * 2016-02-12 2020-01-28 Solarcity Corporation Building integrated photovoltaic roofing assemblies and associated systems and methods
US9863149B2 (en) * 2016-04-07 2018-01-09 Shih Hsiang WU Functional roof construction method and arrangement
NL2018277B1 (en) * 2017-02-01 2018-08-22 Isobouw Systems Bv System for installing solar panels on a sloping roof.
JP2021027266A (en) * 2019-08-08 2021-02-22 トヨタ自動車株式会社 Decorated solar cell module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643770B1 (en) * 1989-02-28 1991-06-21 Centre Nat Rech Scient MICROECHOGRAPHIC ULTRASONIC COLLIMATION PROBE THROUGH A DEFORMABLE SURFACE
US5232518A (en) * 1990-11-30 1993-08-03 United Solar Systems Corporation Photovoltaic roof system
US5092939A (en) * 1990-11-30 1992-03-03 United Solar Systems Corporation Photovoltaic roof and method of making same
DE69222549T2 (en) * 1991-02-20 1998-03-05 Canon Kk Solar cell module with protective element
US5391235A (en) * 1992-03-31 1995-02-21 Canon Kabushiki Kaisha Solar cell module and method of manufacturing the same
JP2974513B2 (en) * 1992-09-03 1999-11-10 キヤノン株式会社 Roof material integrated solar cell module
US5338369A (en) * 1993-02-16 1994-08-16 Rawlings Lyle K Roof-integratable photovolatic modules
US5480494A (en) * 1993-05-18 1996-01-02 Canon Kabushiki Kaisha Solar cell module and installation method thereof
JP3267452B2 (en) * 1993-08-31 2002-03-18 キヤノン株式会社 Photoelectric conversion device and solar cell module
US5457057A (en) * 1994-06-28 1995-10-10 United Solar Systems Corporation Photovoltaic module fabrication process

Also Published As

Publication number Publication date
CA2136790A1 (en) 1995-05-31
US5849107A (en) 1998-12-15
US5589006A (en) 1996-12-31

Similar Documents

Publication Publication Date Title
CA2136790C (en) Solar battery module and passive solar system using the solar cell
US5697192A (en) Solar cell module and installation method thereof
JP3618802B2 (en) Solar cell module
US6541693B2 (en) Solar cell module and process for its production, and solar cell module installing method and solar electricity generation system
EP0829909B1 (en) Solar cell module
EP0631328B1 (en) Solar cell module having heat-fused portion to improve moisture resistance
KR100325955B1 (en) Solar Cell Module and Reinforcing Member for Solar Cell Module
AU741432B2 (en) Solar cell module and method for manufacturing same
AU747454B2 (en) Solar cell module
JP3001785B2 (en) Solar cell module, roofing material, air distribution device, roofing material construction method, and roofing material manufacturing method
JPH0685302A (en) Solar cell panel array
US20110174365A1 (en) System and method for forming roofing solar panels
JPH0685300A (en) Solar cell module
JP2001077394A (en) Solar cell module array equipped with show guard fittings and method of fixing the same
JPH11214734A (en) Solar battery module, its manufacture and execution method and solar battery power generation system
JP3754806B2 (en) Solar cell module and manufacturing method thereof
Virtuani Solar Module Technology
JP2000008567A (en) Building material, fixing tool, building structure, solar battery module power generation system and fixing method of building material
JPH10294486A (en) Method for manufacturing solar cell module
JPH1187755A (en) Solar battery module and manufacture thereof
JPH1027920A (en) Solar battery module
JPH11195804A (en) Solar battery module, its production and its execution method
AU768216B2 (en) Solar cell module and method for manufacturing same
JPH0974215A (en) Solar battery module
JP2001345474A (en) Method and system for manufacturing solar cell module

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed