US20060059772A1 - Structure of a greenhouse - Google Patents

Structure of a greenhouse Download PDF

Info

Publication number
US20060059772A1
US20060059772A1 US11/233,371 US23337105A US2006059772A1 US 20060059772 A1 US20060059772 A1 US 20060059772A1 US 23337105 A US23337105 A US 23337105A US 2006059772 A1 US2006059772 A1 US 2006059772A1
Authority
US
United States
Prior art keywords
air
bench
interior
greenhouse
plenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/233,371
Inventor
David Brault
Alex Turkewitsch
Ron Giercke
Steve Schram
Wayne Zimmerman
Yvon Normandin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONTROLLED ENVIROMENTS Ltd
Original Assignee
CONTROLLED ENVIROMENTS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CONTROLLED ENVIROMENTS Ltd filed Critical CONTROLLED ENVIROMENTS Ltd
Priority to US11/233,371 priority Critical patent/US20060059772A1/en
Assigned to CONTROLLED ENVIROMENTS LIMITED reassignment CONTROLLED ENVIROMENTS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TURKEWITSCH, ALEX, NORMANDIN, YVON, SCHRAM, STEVE, BRAULT, DAVID, ZIMMERMAN, WAYNE, GLERCKE, RON
Publication of US20060059772A1 publication Critical patent/US20060059772A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • This invention relates to a structure of a greenhouse.
  • the term greenhouse as used herein is intended to be primarily but not exclusively directed to environmentally controlled growth chambers using primarily natural light and thus having transparent walls, and particularly to such structures having uniform and accurate control of the interior environment. Such structures are primarily intended for use in research or other similar environments where uniform and accurate control is of high importance rather than in crop production facilities where such close control of the environment cannot be economically justified. However the present invention is not intended to be limited to any particular type or use of such a facility.
  • Greenhouses used for research and high value production often include complex and expensive climate control systems for controlling air quality including temperature control by heating and cooling as required, and humidity, by de-humidification and humidification as required. Also such greenhouses are generally designed so as to maximize light availability to the growing plants. Such greenhouses therefore may include shades and lighting systems so as to control the light availability.
  • the exterior structure is initially constructed using available constructions systems to provide a primarily transparent exterior structure.
  • the benches for supporting the plants, the air handling system and the remaining components are not necessarily manufactured so as to best fit within the exterior structure.
  • additional design effort is necessary to design and construct each of the separate components to match the structure of the exterior.
  • the arrangement disclosed hereinafter is designed based upon the concept that the greenhouse be supplied as a complete structure in which the necessary components are arranged and designed each in relation to the others so as to provide an assembly which is expandable in nature and in which each component is best suited to match the structure and arrangement of the remaining components.
  • a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light
  • a plurality of elongate benches located within the interior and arranged to provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
  • an air handling system for conditioning the air within the interior including at least one air moving fan, at least one interior air intake, at least one interior air outlet, at least one exterior vent and at least one component for changing air temperature;
  • the exterior wall structure including a first side and a second side wall opposite to the first side wall with each of the first and second side walls defined by a plurality of vertical posts at spaced positions along the length of the side wall defining equal spans between each of the plurality of vertical posts and the next with transparent panels arranged to substantially fill the span between the posts;
  • each bench having a bench support for the bench located underneath the bench;
  • each bench being arranged at spaced positions along the first side wall such that each bench has one end adjacent said first side wall such that the bench and the bench support therefor each extend from the first side wall at right angles thereto toward the second side wall;
  • each bench being associated with a respective one of the spans such that the number of spans is equal to the number of benches and such that the bench support of each bench is located between the posts of the associated respective one of the spans.
  • each bench of the plurality of benches is substantially equal to the width of the spans.
  • the side walls at right angles to said one side wall each have the same spans between the posts thereof and the length of each bench from said one side wall is equal to a multiple of the spans.
  • each of the benches is located such that it has one end at said one side wall and has an opposed end spaced from said opposite wall.
  • the span equals six feet.
  • the posts and panels form a curtain wall construction in which the panels are attached at their edges to the posts and fully extend across the span therebetween without intermediate support elements.
  • a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light
  • a plurality of elongate benches located within the interior and arranged to provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
  • an air handling system for conditioning the air within the interior including at least one air moving fan, at least one interior air intake, at least one interior air outlet, at least one exterior vent and at least one component for changing air temperature;
  • the exterior wall structure including a first side and a second side wall opposite to the first side wall with each of the first and second side walls defined by a plurality of vertical posts at spaced positions along the length of the side wall defining equal spans between each of the plurality of vertical posts and the next with transparent panels arranged to substantially fill the span between the posts;
  • each bench being arranged at spaced positions along the first side wall such that each bench has one end adjacent said first side wall and extends therefrom at right angles thereto toward the second side wall;
  • each bench being associated with a respective one of the spans between the posts of said first side wall and arranged such that the number of spans is equal to the number of benches;
  • each bench is substantially equal to the width of the spans
  • the benches are mounted for side to side sliding movement and at least one of the benches has a width which is narrower than that of the spans so as to allow a space between the benches for user access.
  • the side walls at right angles to said one side wall each have the same spans between the posts thereof and the length of each bench from said one side wall is equal to a multiple of the spans.
  • each of the benches is located such that it has one end at said one side wall and has an opposed end spaced from said opposite wall.
  • the span equals six feet.
  • the posts and panels form a curtain wall construction in which the panels are attached at their edges to the posts and fully extend across the span therebetween without intermediate support elements.
  • a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light
  • a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
  • an air handling system comprising:
  • an air intake plenum having at least one air intake
  • the plenum includes at least two inlets and wherein there is provided at each of the inlets within the duct a cooling coil for cooling the air;
  • cooling system which is arranged to effect sub-cooling at one of the coils for de-humidifying the air.
  • a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light
  • a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
  • an air handling system comprising:
  • an air intake plenum having at least one air intake
  • the plenum contains fogging nozzles for applying water droplets to the air
  • fogging nozzles are supplied with water under pressure from a fogging water supply system including a water pump operable to supply water under pressure to an accumulator tank having a gas membrane, the tank being arranged to supply the water under pressure to the nozzles and including a pressure control valve arranged to operate the pump to maintain the pressure within the tank between upper and lower pressure limits so as operate the pump only when the lower pressure limit is reached.
  • a fogging water supply system including a water pump operable to supply water under pressure to an accumulator tank having a gas membrane, the tank being arranged to supply the water under pressure to the nozzles and including a pressure control valve arranged to operate the pump to maintain the pressure within the tank between upper and lower pressure limits so as operate the pump only when the lower pressure limit is reached.
  • a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light
  • a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
  • an air handling system comprising:
  • an air intake plenum having at least one air intake
  • the fan is mounted in a fan housing with the fan housing at one end of the bench arranged to be located at one exterior wall of the greenhouse and wherein the fan housing has a connection for exterior air arranged to extend through said one exterior wall.
  • a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light
  • a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
  • an air handling system comprising:
  • an air intake plenum having at least a part thereof located underneath the bench;
  • At least one air outlet for expelling air into the interior of the greenhouse
  • a fan connected to the plenum for driving air in the plenum from the inlet to the outlet;
  • the fan is mounted in a fan housing with the fan housing at one end of the bench arranged to be located at one exterior wall of the greenhouse and wherein the air inlet is arranged to extend through said one exterior wall.
  • the air conditioning component comprises an air cooling device.
  • the air conditioning component comprises a plurality of air cooling devices located at spaced positions within the part of the plenum underneath the bench.
  • the at least one air outlet comprises a plurality of outlets at spaced positions on the part of the plenum under the bench.
  • the at least one air conditioning component comprises a plurality of evaporative air cooling devices each located at a respective one of the outlets.
  • FIG. 1 is a plan view of a greenhouse according to the present invention.
  • FIG. 2 is a longitudinal cross sectional view through one of the benches of FIG. 1 showing the air handling and conditioning components therein.
  • FIG. 3 is a transverse cross sectional view of the one of the benches of FIG. 1 showing the bench sliding and tilting features.
  • FIG. 3A is a transverse cross sectional view of the a plurality of the benches of FIG. 1 showing the position of the benches relative to one another and to the end wall.
  • FIG. 4 is a cross sectional view through the fan housing and curtain wall at the end of one of the benches of FIG. 1 showing the location of the fan housing relative to the wall, the inlet and outlet openings to the fan housing from the exterior and the location of the channel or chase within the knee wall construction.
  • FIG. 5 is a transverse cross sectional view through whole structure of FIG. 1 showing arrangement of the posts and trusses and showing the roof venting openings for co-operation with the air handling systems.
  • FIG. 6 is a cross sectional view through the junction between a post and roof truss showing the steel interconnections within the interior of the tubular frame members.
  • FIG. 7 is a horizontal cross sectional view through a post and its supported panels showing the curtain wall construction.
  • FIG. 8 is a plan view on an enlarged scale of the alley showing the plan view of the control cabinets forming the wall panels in the alley.
  • FIG. 9 is an elevational view of the components shown in FIG. 8 of the alley showing the elevational view of the control cabinets and door panel forming the panels in the alley.
  • FIG. 10 is a schematic layout of the pressurized water supply system for the fogging nozzles in the air handling duct of FIG. 1 showing the arrangement of pump and accumulator.
  • FIG. 11 is a longitudinal cross sectional view through one of the benches of FIG. 1 showing an alternative arrangement for the air handling and conditioning components therein
  • a greenhouse structure is shown in FIG. 1 and comprises an exterior wall 10 supported on a suitable concrete foundation 11 and defining side walls 12 and 13 of the greenhouse together with a first end wall 14 and a second end wall 15 .
  • Parallel to the end wall 15 is provided an alley wall 16 so that between the parallel walls 15 and 16 is an alleyway 17 .
  • a first door 18 allows access into the alley and is provided in wall 16 and a second door 19 is mounted in the wall 15 so as to allow access from the alley into the main interior of the greenhouse.
  • the greenhouse is manufactured as an expandable system so that the number of benches to be contained within the greenhouse can be increased or decreased in accordance with requirements by selecting a desired length of the greenhouse to accommodate an according respective number of benches.
  • the outside wall structure is formed in sections which can be added and are associated in width with the benches and associated air handling system so that an addition of further wall sections can be complemented by the same number of additional benches.
  • the wall 14 is formed from posts 21 and corner posts 22 .
  • the distance between each of the post is arranged to be equal to the nominal width of a bench so that each bench fits between a post on the next adjacent post and extends from the wall 14 at right angles to that wall in a direction toward the opposite wall 15 . It will be appreciated therefore that the addition of further posts thus increasing the length of the wall 14 and of course the corresponding length of the wall 15 allows the addition of further benches of the same width and same structure as those shown in FIG. 1 .
  • FIG. 1 Also shown in FIG. 1 is a lighting system comprising four rows 23 of lamps.
  • Each of the rows 23 is aligned with a respective one of the posts so that two of the rows are directly aligned with the posts 21 .
  • the rows at the walls 12 and 13 are necessarily moved slightly inwardly from the wall so as to be approximately aligned with the post 22 but move slightly inwardly to be located within the wall structure which is aligned with the respective corner post described in more detail hereinafter.
  • the greenhouse includes a roof generally indicated at 24 which includes trusses 27 defined by roof rafters 25 converging to an upper apex 26 and horizontal bottom beams 28 interconnected by suitable reinforcing members 27 A.
  • the height of the walls is generally of the order of 14 feet thus defining a generally shallow roof structure as is well known in greenhouse construction.
  • the alleyway 17 between the end wall 15 and the alley wall 16 is formed as an extra structure on the otherwise symmetrical greenhouse construction with the roof line defined by the rafters 25 A extending downwardly over the alleyway to terminate at the top of the post forming the wall 16 .
  • the walls and roof are formed as a curtain wall structure defined by extruded tubular posts 30 (as shown in FIG. 7 ) and cladding panels 31 .
  • the posts 30 are connected one to the next by steel structural members 32 which have legs arranged to insert into the hollow interior of the tubular members 30 so as to provide a connection of each tubular member to the next and reinforcement of the tubular members at the connections.
  • FIG. 6 is shown a connection at the top of the post 15 defined by the tubular member 30 which is connected to the roof rafter 25 A formed by a further tubular member 30 by the inserted steel reinforcement 32 which has legs 33 , 34 and 35 which extend into sections of the tubular members 30 at the junction.
  • each post of the side walls is formed a mounting bracket 36 which attaches the bottom of the post 15 A to the concrete floor as shown in plan in FIG. 7 .
  • the cladding panels 31 are attached to the tubular members 30 by a cap 37 .
  • the tubular member 30 defines a main tubular portion of rectangular construction having a front wall 38 and side walls 39 and 40 .
  • the side walls 39 and 40 extend beyond the front wall 38 into a receptacle section 40 which defines two butting ends 39 A and 40 A between which is provided a web section 38 A extending outwardly from at right angles to the end wall 38 .
  • the end of the web section 38 A is formed into a channel 38 B which faces outwardly from the tubular member and is projecting between the butting ends 39 A and 40 A.
  • the cap 37 is formed in two parts including an inner part 37 A and an outer end 37 B. These two parts clip together.
  • the inner part 37 A forms a pair of faces facing toward the end faces 39 A and 40 A so as to define a channel therebetween for receiving two panels 31 and 31 A.
  • This structure therefore forms a curtain wall in that the system comprises the posts which are spaced by the span of the panels and the panels are held against the posts to cooperate with the posts in forming the structural stability.
  • the inner part of the end cap 37 is held in place against the web 38 A by a screw fastener which engages into the channel portion 38 B thus holding the cap held fixed against a tubular member.
  • the posts along each of the side walls are formed by the tubular members 30 and the panels 31 .
  • the tubular members 30 and the panels 31 At the corners, it will be appreciated that it is necessary to provide an additional tubular member attached to the main tubular member which provides a receptacle for two further panels. Again various arrangements are available for providing a curtain wall structure of this type.
  • the panels 31 are separated by horizontal mullions 41 which extend across between the tubular members 30 .
  • the panels 31 are rectangular and span between the posts and are formed of a required height so that a specified number of the panels forms a height of the wall up to the roof structure.
  • the panels are thus separated by the transverse mullion which provide a similar channel and cap arrangement by which the panels are attached to the mullion.
  • the panels 31 are transparent to allow the passage of exterior light into the greenhouse for providing energy to the plants in a conventional manner.
  • a sill 42 is provided at the height of the benches so that below the height of the benches the walls are formed from insulated opaque panels 43 .
  • the sill 42 is attached to the tubular member and extends outwardly to an outermost edge 42 A which is spaced outside the wall 38 of the tubular member.
  • the sill thus acts to shed water in a conventional manner from the glass panels so that the water is shed away from the base of the post.
  • the insulated panels 43 extend from the sill to a bottom connector 44 which sits on the concrete base 11 .
  • the panels 43 in all of the walls except the end wall 14 are simply solid panels with insulation formed as part of the panel thus defining an outer surface 45 at the outer edge 42 A of the sill and inner surface 46 which is located underneath the sill and thus spaced outwardly from the tubular member and spaced outwardly from the end wall 38 thereof, with the web 38 A removed in this section.
  • This defines therefore an open channel between the inside surface 46 and the tubular members forming the posts thus forming a channel or chase for the passage of electrical leads, control leads and piping for heating and cooling fluids.
  • the panel 43 is perforated to form louvers 47 for communication with the fan housing described hereinafter.
  • each of the benches 20 comprises a plenum 50 a fan housing 51 , an outlet duct 52 from the fan housing which includes a vertical duct portion 53 and a horizontal duct portion 54 .
  • a bench tray 55 On top of the plenum 50 is mounted a bench tray 55 which extends from a first end 56 at the fan housing 51 to a second end 57 projecting beyond an end 58 of the plenum 50 .
  • the plenum 50 also has a second end 59 which provides an intake to the fan housing 51 and particularly to a fan 60 mounted within the fan housing.
  • the fan housing 51 forms a rectangular structure with a base sitting on the concrete floor 11 an upper surface 61 to which the duct portion 53 is attached.
  • the fan housing has sides 62 and 63 which are dimensioned so as to just fit between two of the posts of the end wall 14 .
  • an end most one of the benches 20 is located between the corner post 22 and the next adjacent post 21 and a next one of the benches is located between the post 21 and the next adjacent post 21 .
  • the width of the benches is equal to substantially the span of the panels 31 .
  • the fan housing thus fits between two of the posts and is pushed to a position as far outward between the posts as is possible as best shown in FIG. 1 where the fan housing projects to a position just beneath the height of the sill 42 and located between the posts and extending substantially to the rear or outside surface of the post but leaving the chamber underneath the sill accessible for the communication of piping or wiring as previously described.
  • the bench trays 55 have an upper surface which is generally at the same height as the top surface 61 of the fan housing and the sill 42 of the framing structure. More particularly, the top surface of the fan housing is underneath the lowers mullion bar at a height of the order of 36 inches.
  • the bench trays are nominally at a height of the order of 32 inches on top of which is received the plants and their containers. This therefore locates the growing plants on the bench tray at the same height as the bottom of the transparent panels 31 .
  • Each of the bench trays includes side walls 64 which stand upwardly from a base 65 forming a rectangular container for the plants of a conventional nature. Within the tray is provided a support surface 66 which is formed of a sheet plastics material with ribs and channels for conducting water in a conventional manner well known to one skilled in the art.
  • Each of the rectangular trays has a length from the end 56 at the fan housing to the end 57 projecting beyond the end wall 58 of the plenum 50 .
  • Each of the trays has a width which is nominally equal to the width between the posts 21 so that the side walls 67 of the tray abut the side walls 67 of the next adjacent tray to provide a generally or substantially continuous support surface for the growing plants.
  • the trays of intermediate benches that is benches which are not at the side walls are equal in width to the spacing between the post 21 .
  • the end trays have an end wall 67 A which is spaced inwardly from the adjacent side wall 12 or 13 to leave an open space into which a user can walk along the open area between the side wall 13 and the side of the plenum 50 as indicated at 50 A.
  • Each of the bench trays is mounted for sliding movement on bearing tracks 68 in a transverse side to side direction relative to the plenum 50 . It will be appreciated therefore that the space which is defined for the user to enter into the position alongside the bench can be moved to the other side of the bench by sliding the bench tray horizontally toward the side wall 13 . That space can then be moved to the other side of the intermediate bench by sliding the bench tray of the intermediate bench again toward the side wall 14 .
  • all of the benches except one end one or except two end ones of the benches can extend the full width between the posts and the user can get to the side of any one of the benches simply by sliding the benches to the required position to move the space to the required position allowing the user to walk between two of the benches to access the bench on each side of the space.
  • the amount of space necessary is generally of the order of twenty inches thus requiring a sliding movement of each bench of the order of twenty inches and requiring two, generally the endmost ones, of the benches to have a reduced width of ten inches.
  • the spacing between the posts is equal to the width of the bench and particularly the width of the bench trays as it is selected to be a distance of the order of six feet (or the metric equivalent of two meters) since this provides a bench tray which can be reached from either side with the user being able to reach across the centre line of the tray from one side and across the centre line of the tray from the other side allowing access to the full area defined by the tray.
  • This width of six feet (two metres) is matched to the spacing between the posts so as to provide a modular structure in which the greenhouse can be manufactured to accommodate different number of benches simply by adding an additional bay defined by one post and a series of panels and by adding another of the benches which is located between the posts in that bay.
  • the structure further allows the fan housing to be directly associated with the space between the two posts so that it can co-operate with the side wall of the panel below the sill as previously described.
  • Each bench tray is associated with its own air handling system of the climate control system so that air is properly distributed to the plants on the bench so that again the system is modular in that adding a further bay provides the addition of one further bench and one further air handling system thus avoiding individual design requirements for greenhouse structures as used in conventional practice.
  • the modular system therefore allows a purchaser to select a greenhouse size and to know that all of the design work is carried out so that the climate control will match the size of the greenhouse and the size of the benches all of which are symmetrical and operate to provide the best climate control which is uniform at the plant height.
  • the length of the benches in the embodiment shown, is of the order of eighteen feet so that a construction of four spans of the curtain wall along the side walls provides an alley at the end of the benches which is of the order of four feet.
  • these lengths are merely examples and can be greater or less as required.
  • the air handling system of the bench includes the plenum 58 , the fan 60 and the duct 52 .
  • the plenum 50 comprises a rectangular housing standing on the concrete floor 11 and defining a top surface 69 on which the bench tray 55 sits.
  • the bench tray is mounted for pivotal movement about a hinge 70 at one corner of the housing forming the plenum as best shown in FIG. 3 .
  • the bench tray includes a support member 71 which is pivotally connected at the hinge 70 and can fold downwardly to a closed position sitting on the top surface 69 . In the position shown in FIG. 3 , the support member 71 is pivoted in a clockwise direction by manual lifting of the bench tray 55 while controlled and assisted by an air cylinder 72 . Others of the benches may pivot in the same or opposite directions as required.
  • the slide bearings 68 are connected between the tray 55 itself and a support member 71 so that the tray slides back and forth on the bearings relative to the support member, when the support member is in the lowered position.
  • An interlock (not shown) is provided to prevent sliding movement when the support member is unlocked for lifting so as to prevent uncontrolled sliding movement when the tray is moved to the open position shown in FIG. 3 .
  • the end wall 58 of the plenum includes an inlet 74 which is covered by a grill to allow the entry of air into the plenum at the end wall for movement along the plenum to the fan 60 under suction generated by the fan.
  • the side walls 75 and 76 of the plenum each have an air inlet 77 which is located at the floor 11 and extending along the side of the plenum.
  • the air intake 77 are relatively low forming less than one half of the height of the plenum so as to take air primarily from the floor level.
  • a cooling coil 78 and 79 Inside each of the inlets 74 and 77 is provided a cooling coil 78 and 79 respectively.
  • the cooling coil is thus located across the plenum so that air drawn into the respective inlet passes through the cooling coil.
  • the cooling coil acts to reduce the temperature of the air drawn into the plenum.
  • a heating coil 80 Downstream of the three inlets 74 and 77 is provided a heating coil 80 which is located between the inlets 77 and the fan 60 .
  • the heating coil will act to apply heat to the air drawn into the fan.
  • the temperature of the air at the fan can be selected in accordance with requirements so that the air supplied to the plants on the bench trays is at the required temperature.
  • the fan 60 is mounted in the fan housing which is arranged to butt the end wall 59 of the plenum.
  • the fan is of the centrifugal type defining a circular air inlet 81 and an annular air outlet 82 which ejects the air into the rectangular fan housing surrounding the annular outlet 82 .
  • the fan housing 51 communicates with an outlet 47 in the panel 43 .
  • the fan housing 51 has a rear wall 83 at the panel 43 which has an opening 84 controlled by flaps 85 which can be moved from a closed position preventing the escape of air from the fan housing through the opening 47 to a controlled open position which allows a controlled amount of air to escape from the fan housing to the exterior through the opening 47 .
  • the opening 84 thus acts as an air outlet for expelling air from the interior of the greenhouse pulled into the plenum through the inlets to the plenum.
  • Makeup air into the greenhouse can be drawn through roof vents 86 shown in FIG. 5 .
  • These roof vents comprise panels along the roof ridge 26 which are hinged at the roof ridge and can be pivoted upwardly away from the roof line to provide an opening on the underside of the roof vent.
  • the climate control system can therefore be controlled to manage the temperature within the greenhouse by drawing air along the paths marked by the arrows A so that exterior air is drawn into the roof space an expelled through the vent 47 .
  • a duct 87 is also provided through the fan housing from the exterior into the plenum 55 .
  • the duct 87 is located at a position spaced from the opening 47 and provides an inlet duct connecting with the exterior through the panel 43 and connected onto the suction side of the fan in the plenum 55 .
  • the duct 87 can be controlled by a flap valve 88 so as to allow air from the exterior into the plenum drawn by the reduced pressure of the suction side of the fan.
  • the flap valve 88 is used separately from the flap valves 85 so that in a different mode of operation air is drawn into the greenhouse through the duct 87 to increase the pressure inside the greenhouse thus requiring excess air to be expelled through the roof vent 86 .
  • the vertical duct section 53 is connected to the top wall 61 of the fan housing so as to receive pressurized air therefrom.
  • the vertical duct 53 is arranged at the end wall 14 between the posts 21 , 22 close to the panels.
  • the vertical duct portion is formed from two parallel walls defining a front and rear wall which extend from the top surface 61 upwardly to a position closely adjacent the roof beams 28 as shown in FIG. 5 .
  • the vertical duct thus has a rectangular open bottom mouth defined by sidewalls 89 and 90 connecting the front wall 91 to the rear wall 92 .
  • the side walls 89 and 90 from their position connected with the top surface 61 of the fan housing converge inwardly to a neck section 93 and then diverge outwardly to an upper elbow 94 .
  • the elbow 94 has a horizontal bottom mouth 95 which is rectangular and connects to the top of the vertical duct portion.
  • the elbow 94 forms a vertical mouth 96 at its upper end facing along the greenhouse from the end wall 14 toward the opposite end wall 15 along the beams 28 .
  • the elbow 94 and the vertical duct section 52 are formed from rigid transparent plastics material so as to be self supporting and fixed standing upwardly from the upper surface of the fan housing. These are transparent material allows the passage of light so as to reduce the interference with the natural light through the walls of the greenhouse.
  • the horizontal duct portion 54 is formed from a tubular body of flexible plastics material which is again transparent or translucent.
  • the tubular body has a closed outer end 97 spaced outwardly from the open mouth 96 of the elbow 94 .
  • the opposite open end of the tubular body forming the duct portion 54 is engaged onto the end face 96 of the elbow 94 by horizontal top and bottom clamping bars 98 and semi-circular end pieces.
  • the tubular body forming the duct portion 54 is held substantially elongate at its open mouth.
  • the tubular body is suspended from the roof beams 28 on straps 99 so as to simply to extend along the roof beams 28 directly over the bench.
  • the tubular body is inflated by the air from the vertical duct portion but is prevented from forming a circular cylindrical cross section by a plurality of vertical webs 100 which are arranged along the length of a tubular body at positions spaced across the width of the body and standing in a vertical plane.
  • the body when inflated forms generally an elliptical cross section with a wider bottom surface 101 than the height between the top and bottom surfaces which are defined by the webs 100 .
  • the bottom surface has an array of holes 102 which causes the air to escape from the underside of the tubular body and flow from the tubular body down toward the growing plants.
  • the air flow is selected relative to the total areas of holes so that the air escapes from the tubular body under sufficient pressure to generate a velocity at the plants of the order of 50 ft/min which is known in the art to provide suitable gas exchange at the plant surfaces
  • a water droplet injection nozzle or fogging system schematically indicated at 103 which includes a control valve 104 for controlling the injection of water droplets into the valve housing from a water supply through a chase 105 located in the chamber underneath the sill 42 .
  • the control system is shown schematically in FIG. 2 and comprises a controlled unit 106 which is arranged to control the supply of cooling fluid via cool control 107 , to control the supply of heating fluid through a heating control 108 , to control the position of the vents at the roof and in the fan housing through a vent motor control 109 and to control the supply of water droplets through a valve control 110 .
  • the control unit receives inputs from one or more sensors 111 which detect the temperature and humidity of the air at the plants.
  • the humidity of the air can also be carefully controlled either by de-humidifying the air or by adding water droplets at the nozzles 103 .
  • Dehumidifying the air is effected by sub-cooling the cooling coils 78 so that the cooling coil 78 is cooled to a lower temperature than the cooling coils 79 .
  • This acts to sub cool the air passing through the cooling coil 78 which extracts moisture from the air which is then suitably collected at the cooling coil and run to drain.
  • the cooling effect of the cooling coil 79 is relatively reduced in order to provide a reduction in temperature and the cooling coil 78 of the air which is lower than the resultant air temperature required thus acting to extract more moisture at the cooling coil 78 than would be obtained if all three cooling coils were run at the same cooling temperature.
  • Humidification of the air is effected simply by the spraying of water droplets in a fogging system from the nozzle 103 within the fan housing.
  • Water is supplied to the nozzles at a pressure of the order of 1000 PSI so as to form small droplets from the fogging system which are carried from the fan housing to the duct while evaporating in the air being transported through the duct for discharge into the greenhouse above the plants.
  • each bench ensures that each bench is supplied with the same air in the same quantity and pattern since each of the air handling systems is managed symmetrically.
  • the use of relatively flat wide discharge duct above the bench ensures that the air is deposited with little or no pressure downwardly over the full area of the bench so that each location on the bench receives substantially the same air movement from the duct.
  • the duct is slightly narrower than the width of the bench but the location of holes around the hole whole of the underside of the duct 54 allows air to be expelled both directly downwardly and slightly to the sides of the duct.
  • the lighting system including the rows 23 of lighting elements comprises a plurality of individual light fixtures 112 mounted on a rail 113 .
  • These lighting fixtures includes a reflector and bulb but the ballast unit for the individual lighting fixtures are collected together in a cabinet 114 and 115 .
  • the control unit and the electrical connections and control elements necessary therefore are provided in plurality of cabinets 116 , 117 and 118 . These cabinets are conveniently located as shown in FIG. 8 in the alley 17 .
  • the structure of the greenhouse is formed by panels which are inserted between posts where the panels are carried in the channels defined between the tube member and the cap.
  • the cabinets are thus conveniently formed as panels which are arranged to be inserted in the alleyway between posts 120 , 121 and 122 respectively.
  • the cabinet 114 and the cabinet 117 together form a panel with seals at the top and sides which allow the panels to co-operate with the channels of the posts 120 and 121 and the mullion piece 124 at the top of the panels.
  • the bottom of the cabinets is raised from the floor and sits on a stand 123 at the bottom with a rear panel of the stand closing the area underneath the cabinet against communication if air between the alley and the greenhouse.
  • the cabinets 118 and 115 are mounted in a panel 125 which is located between the posts 121 and 122 .
  • the panels include top and side seals which engage the posts and mullion bar.
  • the ballast cabinets 114 and 115 generate significant heat so they include inlet vents 126 for allowing fan generated air flow cooling.
  • the pre-formed system of the greenhouse is maintained in that modular panels can be supplied for mounting in the location between the posts in the conventional manner previously described so that it is no longer necessary to manufacture or supply separate electrical cabinets and the location of those cabinets is conveniently provided for in the alley within the panels.
  • the cabinet 116 is mounted in the panel 127 in the wall 16 . Because the cabinet 116 is located in the exterior wall 16 , it is mounted wholly within the structure so that the panel runs along the back of the cabinet 116 .
  • the cabinets 114 . 117 , 118 and 115 may be mounted as shown so that they project through the respective panel so as a portion of the cabinet is on each side of the panel.
  • Each of the cabinets has a door or doors which is accessible from the alley 17 .
  • the electrical cabinets contain the electrical components provided in the control system and all other electrical elements including a main power supply and a backup power supply in the event of an initial power failure.
  • each of the doors 18 and 19 is formed as a panel 126 , 127 so that it can be readily installed as part of the curtain wall system by mounting on the posts of the curtain wall system in the walls 16 and 15 respectively.
  • the panels 126 and 127 include side panel portions 128 and a top panel portion 129 which surround the door and form the panel into a predetermined dimension matching the width between the posts and matching a required spaced between the floor and a mullion bar.
  • the remaining spaces between the posts can be formed by transparent panels 31 as previously described or by insulated non transparent filler panels 130 .
  • FIG. 8 is shown one possible location of the water pump system 131 for supplying water under pressure of the order of 1000 PSI for supplying the water nozzles for the humidification system. Additional water nozzles (not shown) can also be provided in the area underneath the horizontal discharge ducts 54 for increased humidification levels and/or in the area of the roof vents so as to provide water evaporative cooling of the air.
  • the control system 110 previously described controls the supply of water from the pump system 131 to the individual nozzles so as to provide the required effect either within the fan housing or within the other areas of the greenhouse as is required and is known to persons skilled in the art.
  • the pump system 131 is shown in more detail which comprises a pump 132 and an accumulator 133 .
  • the accumulator 133 includes a bladder 134 with nitrogen contained within the bladder injected from a pressure nozzle 135 .
  • the accumulator tank 133 is designed to receive and contain the water under the high pressure of the order of 1000 PSI for supplying the injection nozzles.
  • the outlet to the nozzles is indicated at 136 .
  • Water supplied to the pump 132 at an inlet line 140 is controlled by a valve 141 and a pressure sensor 142 and is pumped to the pressure of the order of 1000 PSI which is pumped into the accumulator through a line 143 controlled by valves 137 until the pressure within the accumulator as detected by a pressure valve 138 reaches the required maximum operating pressure at which time the pump is shut off. Water under pressure is then supplied from the accumulator under the control of the valve arrangements 139 to the nozzles as required. The outlet pressure is maintained above a predetermined minimum as detected by a pressure detector 138 and when the minimum is reached the pump is reactivated to pump more water into the accumulator.
  • An over pressure valve 145 can detect running of the pump beyond a required pressure and switches the output of the pump to a drain line 146 .
  • FIG. 11 is shown an alternative arrangement which uses many of the components of the previously described arrangement but is modified to provide a simplified and therefore less expensive construction which can be used where a reduced cost is required.
  • the direction of operation of the fan 60 is reversed so that it acts to draw air in through the opening 84 so that the opening 84 becomes the air inlet into the plenum.
  • the vertical duct and the horizontal outlets is removed so that the air driven into the plenum and exits through the openings 74 and 77 so that these openings become outlets rather than inlets.
  • the refrigerated cooling coils are omitted and are replaced by evaporative cooling elements 178 and 179 of a known construction in which water is fed into a suitable support element through which the air passes as it moves toward the outlets 74 and 77 to effect evaporation of the water on eth support element to cause both cooling and humidification of the air entering the greenhouse.
  • the elements are generally planar members with the air passing through at right angles and the water being trickled through the members.
  • the plenum can be provided as a separate element from the bench so that the bench is supported on simple legs and the plenum merely a rectangular duct without and structural requirements.

Abstract

A greenhouse has an exterior curtain wall structure formed by spaced tubular posts carrying external transparent panels and bottom non-transparent wall panels below a sill with the panels spanning the posts. A plurality of elongate benches is located within the interior at spaced positions along one side wall with the width of the benches being equal to the post spacing to form a modular construction. Each bench has associated with it a respective air handling system for conditioning including a duct which is located partly under the respective bench and a fan in a fan housing at the side wall. From the fan a vertical duct section extends to a flexible tube extending over the bench. An alley is arranged along the opposite wall containing electrical controls mounted in cabinets forming panels for mounting in the span between posts. Air dehumidification, fogging, heating and cooling are provided in the duct under the bench.

Description

  • This application is a continuation-in-part application of application Ser. No. 10/616,296, filed Jul. 10, 2003 and now issued as U.S. Pat. No INSERT.
  • This invention relates to a structure of a greenhouse.
  • The term greenhouse as used herein is intended to be primarily but not exclusively directed to environmentally controlled growth chambers using primarily natural light and thus having transparent walls, and particularly to such structures having uniform and accurate control of the interior environment. Such structures are primarily intended for use in research or other similar environments where uniform and accurate control is of high importance rather than in crop production facilities where such close control of the environment cannot be economically justified. However the present invention is not intended to be limited to any particular type or use of such a facility.
  • This application is related to a series of two further applications all filed simultaneously with this application and assigned to the same assignee as follows:
  • application Ser. No. 10/616,297 filed Jul. 10, 2003 and entitled Lighting system for a Greenhouse;
  • application Ser. No. 10/616,298 filed Jul. 10, 2003 and entitled Climate Control for a Greenhouse.
  • The disclosures of the above applications are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Greenhouses used for research and high value production often include complex and expensive climate control systems for controlling air quality including temperature control by heating and cooling as required, and humidity, by de-humidification and humidification as required. Also such greenhouses are generally designed so as to maximize light availability to the growing plants. Such greenhouses therefore may include shades and lighting systems so as to control the light availability.
  • Up until now such greenhouses have generally been manufactured in the same manner as commercial buildings in that different contractors and suppliers are contracted to assembly the exterior structure, to provide air handling equipment, to provide electrical control systems, to provide shading systems and to provide lighting systems.
  • Thus the exterior structure is initially constructed using available constructions systems to provide a primarily transparent exterior structure. However the benches for supporting the plants, the air handling system and the remaining components are not necessarily manufactured so as to best fit within the exterior structure. Thus additional design effort is necessary to design and construct each of the separate components to match the structure of the exterior.
  • The arrangement disclosed hereinafter is designed based upon the concept that the greenhouse be supplied as a complete structure in which the necessary components are arranged and designed each in relation to the others so as to provide an assembly which is expandable in nature and in which each component is best suited to match the structure and arrangement of the remaining components.
  • SUMMARY OF THE INVENTION
  • It is one object of the present invention, therefore, to provide an improved greenhouse structure.
  • According to a first aspect of the invention there is provided a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
  • a plurality of elongate benches located within the interior and arranged to provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
  • an air handling system for conditioning the air within the interior including at least one air moving fan, at least one interior air intake, at least one interior air outlet, at least one exterior vent and at least one component for changing air temperature;
  • the exterior wall structure including a first side and a second side wall opposite to the first side wall with each of the first and second side walls defined by a plurality of vertical posts at spaced positions along the length of the side wall defining equal spans between each of the plurality of vertical posts and the next with transparent panels arranged to substantially fill the span between the posts;
  • each bench having a bench support for the bench located underneath the bench;
  • the benches being arranged at spaced positions along the first side wall such that each bench has one end adjacent said first side wall such that the bench and the bench support therefor each extend from the first side wall at right angles thereto toward the second side wall;
  • each bench being associated with a respective one of the spans such that the number of spans is equal to the number of benches and such that the bench support of each bench is located between the posts of the associated respective one of the spans.
  • Preferably the width of each bench of the plurality of benches is substantially equal to the width of the spans.
  • Preferably the side walls at right angles to said one side wall each have the same spans between the posts thereof and the length of each bench from said one side wall is equal to a multiple of the spans.
  • Preferably each of the benches is located such that it has one end at said one side wall and has an opposed end spaced from said opposite wall.
  • Preferably the span equals six feet.
  • Preferably the posts and panels form a curtain wall construction in which the panels are attached at their edges to the posts and fully extend across the span therebetween without intermediate support elements.
  • According to a second aspect of the invention there is provided a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
  • a plurality of elongate benches located within the interior and arranged to provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
  • an air handling system for conditioning the air within the interior including at least one air moving fan, at least one interior air intake, at least one interior air outlet, at least one exterior vent and at least one component for changing air temperature;
  • the exterior wall structure including a first side and a second side wall opposite to the first side wall with each of the first and second side walls defined by a plurality of vertical posts at spaced positions along the length of the side wall defining equal spans between each of the plurality of vertical posts and the next with transparent panels arranged to substantially fill the span between the posts;
  • the benches being arranged at spaced positions along the first side wall such that each bench has one end adjacent said first side wall and extends therefrom at right angles thereto toward the second side wall;
  • each bench being associated with a respective one of the spans between the posts of said first side wall and arranged such that the number of spans is equal to the number of benches;
  • wherein the width of each bench is substantially equal to the width of the spans;
  • and wherein at least some of the benches are mounted for side to side sliding movement and at least one of the benches has a width which is narrower than that of the spans so as to allow a space between the benches for user access.
  • Preferably the side walls at right angles to said one side wall each have the same spans between the posts thereof and the length of each bench from said one side wall is equal to a multiple of the spans.
  • Preferably each of the benches is located such that it has one end at said one side wall and has an opposed end spaced from said opposite wall.
  • Preferably the span equals six feet.
  • Preferably the posts and panels form a curtain wall construction in which the panels are attached at their edges to the posts and fully extend across the span therebetween without intermediate support elements.
  • According to a third aspect of the invention there is provided a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
  • a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior; and
  • and an air handling system comprising:
  • an air intake plenum having at least one air intake,
  • a fan connected to the plenum,
  • an outlet duct connected to the fan having an air outlet for expelling air from the duct into the interior of the greenhouse,
  • and at least one air conditioning component for conditioning the air transported from the plenum to the duct by the fan;
  • wherein the plenum includes at least two inlets and wherein there is provided at each of the inlets within the duct a cooling coil for cooling the air;
  • and wherein the supply of cooling fluid to each of the coils is controlled by a cooling system which is arranged to effect sub-cooling at one of the coils for de-humidifying the air.
  • According to a fourth aspect of the invention there is provided a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
  • a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior; and
  • and an air handling system comprising:
  • an air intake plenum having at least one air intake,
  • a fan connected to the plenum,
  • an outlet duct connected to the fan having an air outlet for expelling air from the duct into the interior of the greenhouse,
  • and at least one air conditioning component for conditioning the air transported from the plenum to the duct by the fan;
  • wherein the plenum contains fogging nozzles for applying water droplets to the air;
  • and wherein the fogging nozzles are supplied with water under pressure from a fogging water supply system including a water pump operable to supply water under pressure to an accumulator tank having a gas membrane, the tank being arranged to supply the water under pressure to the nozzles and including a pressure control valve arranged to operate the pump to maintain the pressure within the tank between upper and lower pressure limits so as operate the pump only when the lower pressure limit is reached.
  • According to a fifth aspect of the invention there is provided a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
  • a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior; and
  • and an air handling system comprising:
  • an air intake plenum having at least one air intake,
  • a fan connected to the plenum,
  • an outlet duct connected to the fan having an air outlet for expelling air from the duct into the interior of the greenhouse,
  • and at least one air conditioning component for conditioning the air transported from the plenum to the duct by the fan;
  • wherein the fan is mounted in a fan housing with the fan housing at one end of the bench arranged to be located at one exterior wall of the greenhouse and wherein the fan housing has a connection for exterior air arranged to extend through said one exterior wall.
  • According to a sixth aspect of the invention there is provided a greenhouse comprising:
  • an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
  • a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior; and
  • and an air handling system comprising:
  • an air intake plenum having at least a part thereof located underneath the bench;
  • at least one air outlet for expelling air into the interior of the greenhouse;
  • a fan connected to the plenum for driving air in the plenum from the inlet to the outlet;
  • and at least one air conditioning component in the part of the plenum underneath the bench for conditioning the air;
  • wherein the fan is mounted in a fan housing with the fan housing at one end of the bench arranged to be located at one exterior wall of the greenhouse and wherein the air inlet is arranged to extend through said one exterior wall.
  • Preferably the air conditioning component comprises an air cooling device.
  • Preferably the air conditioning component comprises a plurality of air cooling devices located at spaced positions within the part of the plenum underneath the bench.
  • Preferably the at least one air outlet comprises a plurality of outlets at spaced positions on the part of the plenum under the bench.
  • Preferably the at least one air conditioning component comprises a plurality of evaporative air cooling devices each located at a respective one of the outlets.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • One embodiment of the invention will now be described in conjunction with the accompanying drawings in which:
  • FIG. 1 is a plan view of a greenhouse according to the present invention.
  • FIG. 2 is a longitudinal cross sectional view through one of the benches of FIG. 1 showing the air handling and conditioning components therein.
  • FIG. 3 is a transverse cross sectional view of the one of the benches of FIG. 1 showing the bench sliding and tilting features.
  • FIG. 3A is a transverse cross sectional view of the a plurality of the benches of FIG. 1 showing the position of the benches relative to one another and to the end wall.
  • FIG. 4 is a cross sectional view through the fan housing and curtain wall at the end of one of the benches of FIG. 1 showing the location of the fan housing relative to the wall, the inlet and outlet openings to the fan housing from the exterior and the location of the channel or chase within the knee wall construction.
  • FIG. 5 is a transverse cross sectional view through whole structure of FIG. 1 showing arrangement of the posts and trusses and showing the roof venting openings for co-operation with the air handling systems.
  • FIG. 6 is a cross sectional view through the junction between a post and roof truss showing the steel interconnections within the interior of the tubular frame members.
  • FIG. 7 is a horizontal cross sectional view through a post and its supported panels showing the curtain wall construction.
  • FIG. 8 is a plan view on an enlarged scale of the alley showing the plan view of the control cabinets forming the wall panels in the alley.
  • FIG. 9 is an elevational view of the components shown in FIG. 8 of the alley showing the elevational view of the control cabinets and door panel forming the panels in the alley.
  • FIG. 10 is a schematic layout of the pressurized water supply system for the fogging nozzles in the air handling duct of FIG. 1 showing the arrangement of pump and accumulator.
  • FIG. 11 is a longitudinal cross sectional view through one of the benches of FIG. 1 showing an alternative arrangement for the air handling and conditioning components therein
  • DETAILED DESCRIPTION
  • A greenhouse structure is shown in FIG. 1 and comprises an exterior wall 10 supported on a suitable concrete foundation 11 and defining side walls 12 and 13 of the greenhouse together with a first end wall 14 and a second end wall 15. Parallel to the end wall 15 is provided an alley wall 16 so that between the parallel walls 15 and 16 is an alleyway 17. A first door 18 allows access into the alley and is provided in wall 16 and a second door 19 is mounted in the wall 15 so as to allow access from the alley into the main interior of the greenhouse.
  • Within the greenhouse is mounted a plurality of greenhouse benches generally indicated at 20, each of which comprises an air handling system and a bench top support for plants. The greenhouse is manufactured as an expandable system so that the number of benches to be contained within the greenhouse can be increased or decreased in accordance with requirements by selecting a desired length of the greenhouse to accommodate an according respective number of benches. Thus the outside wall structure is formed in sections which can be added and are associated in width with the benches and associated air handling system so that an addition of further wall sections can be complemented by the same number of additional benches.
  • Thus the wall 14 is formed from posts 21 and corner posts 22. The distance between each of the post is arranged to be equal to the nominal width of a bench so that each bench fits between a post on the next adjacent post and extends from the wall 14 at right angles to that wall in a direction toward the opposite wall 15. It will be appreciated therefore that the addition of further posts thus increasing the length of the wall 14 and of course the corresponding length of the wall 15 allows the addition of further benches of the same width and same structure as those shown in FIG. 1.
  • Also shown in FIG. 1 is a lighting system comprising four rows 23 of lamps. Each of the rows 23 is aligned with a respective one of the posts so that two of the rows are directly aligned with the posts 21. Of course the rows at the walls 12 and 13 are necessarily moved slightly inwardly from the wall so as to be approximately aligned with the post 22 but move slightly inwardly to be located within the wall structure which is aligned with the respective corner post described in more detail hereinafter.
  • Turning now to FIGS. 4, 5, 6, and 7, the structure of the greenhouse is shown in more detail. Thus from FIG. 5 it will be noted that the greenhouse includes a roof generally indicated at 24 which includes trusses 27 defined by roof rafters 25 converging to an upper apex 26 and horizontal bottom beams 28 interconnected by suitable reinforcing members 27A. The height of the walls is generally of the order of 14 feet thus defining a generally shallow roof structure as is well known in greenhouse construction. The alleyway 17 between the end wall 15 and the alley wall 16 is formed as an extra structure on the otherwise symmetrical greenhouse construction with the roof line defined by the rafters 25A extending downwardly over the alleyway to terminate at the top of the post forming the wall 16.
  • The walls and roof are formed as a curtain wall structure defined by extruded tubular posts 30 (as shown in FIG. 7) and cladding panels 31. The posts 30 are connected one to the next by steel structural members 32 which have legs arranged to insert into the hollow interior of the tubular members 30 so as to provide a connection of each tubular member to the next and reinforcement of the tubular members at the connections. Thus in FIG. 6 is shown a connection at the top of the post 15 defined by the tubular member 30 which is connected to the roof rafter 25A formed by a further tubular member 30 by the inserted steel reinforcement 32 which has legs 33, 34 and 35 which extend into sections of the tubular members 30 at the junction.
  • At the bottom of each post of the side walls is formed a mounting bracket 36 which attaches the bottom of the post 15A to the concrete floor as shown in plan in FIG. 7.
  • The cladding panels 31 are attached to the tubular members 30 by a cap 37. Thus the tubular member 30 defines a main tubular portion of rectangular construction having a front wall 38 and side walls 39 and 40. The side walls 39 and 40 extend beyond the front wall 38 into a receptacle section 40 which defines two butting ends 39A and 40A between which is provided a web section 38A extending outwardly from at right angles to the end wall 38. The end of the web section 38A is formed into a channel 38B which faces outwardly from the tubular member and is projecting between the butting ends 39A and 40A. The cap 37 is formed in two parts including an inner part 37A and an outer end 37B. These two parts clip together. The inner part 37A forms a pair of faces facing toward the end faces 39A and 40A so as to define a channel therebetween for receiving two panels 31 and 31A. Thus the panels are held in place against the tubular member by the end cap. This structure therefore forms a curtain wall in that the system comprises the posts which are spaced by the span of the panels and the panels are held against the posts to cooperate with the posts in forming the structural stability. The inner part of the end cap 37 is held in place against the web 38A by a screw fastener which engages into the channel portion 38B thus holding the cap held fixed against a tubular member.
  • Curtain wall structures of this type are known and other profiles of the tubular members and associated caps can be provided and are available from other manufacturers.
  • As shown in FIG. 1, the posts along each of the side walls are formed by the tubular members 30 and the panels 31. At the corners, it will be appreciated that it is necessary to provide an additional tubular member attached to the main tubular member which provides a receptacle for two further panels. Again various arrangements are available for providing a curtain wall structure of this type.
  • As shown in FIG. 4, the panels 31 are separated by horizontal mullions 41 which extend across between the tubular members 30. Thus the panels 31 are rectangular and span between the posts and are formed of a required height so that a specified number of the panels forms a height of the wall up to the roof structure. The panels are thus separated by the transverse mullion which provide a similar channel and cap arrangement by which the panels are attached to the mullion.
  • The panels 31 are transparent to allow the passage of exterior light into the greenhouse for providing energy to the plants in a conventional manner. A sill 42 is provided at the height of the benches so that below the height of the benches the walls are formed from insulated opaque panels 43. The sill 42 is attached to the tubular member and extends outwardly to an outermost edge 42A which is spaced outside the wall 38 of the tubular member. The sill thus acts to shed water in a conventional manner from the glass panels so that the water is shed away from the base of the post. The insulated panels 43 extend from the sill to a bottom connector 44 which sits on the concrete base 11. The panels 43 in all of the walls except the end wall 14 are simply solid panels with insulation formed as part of the panel thus defining an outer surface 45 at the outer edge 42A of the sill and inner surface 46 which is located underneath the sill and thus spaced outwardly from the tubular member and spaced outwardly from the end wall 38 thereof, with the web 38A removed in this section. This defines therefore an open channel between the inside surface 46 and the tubular members forming the posts thus forming a channel or chase for the passage of electrical leads, control leads and piping for heating and cooling fluids.
  • In the end wall 14 as shown in FIG. 4, the panel 43 is perforated to form louvers 47 for communication with the fan housing described hereinafter.
  • Turning now to FIGS. 1, 2, 3 and 3A, the construction of each of the benches including the associated air handling system of the climate control system. Each of the benches 20 comprises a plenum 50 a fan housing 51, an outlet duct 52 from the fan housing which includes a vertical duct portion 53 and a horizontal duct portion 54. On top of the plenum 50 is mounted a bench tray 55 which extends from a first end 56 at the fan housing 51 to a second end 57 projecting beyond an end 58 of the plenum 50. The plenum 50 also has a second end 59 which provides an intake to the fan housing 51 and particularly to a fan 60 mounted within the fan housing.
  • It will be noted from FIGS. 1 and 3A that the fan housing 51 forms a rectangular structure with a base sitting on the concrete floor 11 an upper surface 61 to which the duct portion 53 is attached. The fan housing has sides 62 and 63 which are dimensioned so as to just fit between two of the posts of the end wall 14. Thus an end most one of the benches 20 is located between the corner post 22 and the next adjacent post 21 and a next one of the benches is located between the post 21 and the next adjacent post 21. Thus the width of the benches is equal to substantially the span of the panels 31. The fan housing thus fits between two of the posts and is pushed to a position as far outward between the posts as is possible as best shown in FIG. 1 where the fan housing projects to a position just beneath the height of the sill 42 and located between the posts and extending substantially to the rear or outside surface of the post but leaving the chamber underneath the sill accessible for the communication of piping or wiring as previously described.
  • The bench trays 55 have an upper surface which is generally at the same height as the top surface 61 of the fan housing and the sill 42 of the framing structure. More particularly, the top surface of the fan housing is underneath the lowers mullion bar at a height of the order of 36 inches. The bench trays are nominally at a height of the order of 32 inches on top of which is received the plants and their containers. This therefore locates the growing plants on the bench tray at the same height as the bottom of the transparent panels 31. Each of the bench trays includes side walls 64 which stand upwardly from a base 65 forming a rectangular container for the plants of a conventional nature. Within the tray is provided a support surface 66 which is formed of a sheet plastics material with ribs and channels for conducting water in a conventional manner well known to one skilled in the art.
  • Each of the rectangular trays has a length from the end 56 at the fan housing to the end 57 projecting beyond the end wall 58 of the plenum 50. Each of the trays has a width which is nominally equal to the width between the posts 21 so that the side walls 67 of the tray abut the side walls 67 of the next adjacent tray to provide a generally or substantially continuous support surface for the growing plants. The trays of intermediate benches that is benches which are not at the side walls are equal in width to the spacing between the post 21. The end trays have an end wall 67A which is spaced inwardly from the adjacent side wall 12 or 13 to leave an open space into which a user can walk along the open area between the side wall 13 and the side of the plenum 50 as indicated at 50A.
  • Each of the bench trays is mounted for sliding movement on bearing tracks 68 in a transverse side to side direction relative to the plenum 50. It will be appreciated therefore that the space which is defined for the user to enter into the position alongside the bench can be moved to the other side of the bench by sliding the bench tray horizontally toward the side wall 13. That space can then be moved to the other side of the intermediate bench by sliding the bench tray of the intermediate bench again toward the side wall 14. Thus in an extended greenhouse having many of the benches side by side, all of the benches except one end one or except two end ones of the benches can extend the full width between the posts and the user can get to the side of any one of the benches simply by sliding the benches to the required position to move the space to the required position allowing the user to walk between two of the benches to access the bench on each side of the space. The amount of space necessary is generally of the order of twenty inches thus requiring a sliding movement of each bench of the order of twenty inches and requiring two, generally the endmost ones, of the benches to have a reduced width of ten inches.
  • The spacing between the posts is equal to the width of the bench and particularly the width of the bench trays as it is selected to be a distance of the order of six feet (or the metric equivalent of two meters) since this provides a bench tray which can be reached from either side with the user being able to reach across the centre line of the tray from one side and across the centre line of the tray from the other side allowing access to the full area defined by the tray. This width of six feet (two metres) is matched to the spacing between the posts so as to provide a modular structure in which the greenhouse can be manufactured to accommodate different number of benches simply by adding an additional bay defined by one post and a series of panels and by adding another of the benches which is located between the posts in that bay. The structure further allows the fan housing to be directly associated with the space between the two posts so that it can co-operate with the side wall of the panel below the sill as previously described. Each bench tray is associated with its own air handling system of the climate control system so that air is properly distributed to the plants on the bench so that again the system is modular in that adding a further bay provides the addition of one further bench and one further air handling system thus avoiding individual design requirements for greenhouse structures as used in conventional practice. The modular system therefore allows a purchaser to select a greenhouse size and to know that all of the design work is carried out so that the climate control will match the size of the greenhouse and the size of the benches all of which are symmetrical and operate to provide the best climate control which is uniform at the plant height.
  • The length of the benches, in the embodiment shown, is of the order of eighteen feet so that a construction of four spans of the curtain wall along the side walls provides an alley at the end of the benches which is of the order of four feet. However these lengths are merely examples and can be greater or less as required.
  • The air handling system of the bench includes the plenum 58, the fan 60 and the duct 52. The plenum 50 comprises a rectangular housing standing on the concrete floor 11 and defining a top surface 69 on which the bench tray 55 sits. The bench tray is mounted for pivotal movement about a hinge 70 at one corner of the housing forming the plenum as best shown in FIG. 3. The bench tray includes a support member 71 which is pivotally connected at the hinge 70 and can fold downwardly to a closed position sitting on the top surface 69. In the position shown in FIG. 3, the support member 71 is pivoted in a clockwise direction by manual lifting of the bench tray 55 while controlled and assisted by an air cylinder 72. Others of the benches may pivot in the same or opposite directions as required. The slide bearings 68 are connected between the tray 55 itself and a support member 71 so that the tray slides back and forth on the bearings relative to the support member, when the support member is in the lowered position. An interlock (not shown) is provided to prevent sliding movement when the support member is unlocked for lifting so as to prevent uncontrolled sliding movement when the tray is moved to the open position shown in FIG. 3.
  • In the open position access to the open top surface 69 is provided which allows the user to reach into a closing door 73 which acts as a seal for the top of the plenum to prevent air entry into the plenum except at the desired inlet locations described hereinafter. When the bench tray is pivoted to the inclined open position shown in FIG. 3, therefore, the doors 73 can be accessed for opening to allow service work and cleaning within the plenum. The air plenum into which air enters is therefore defined by the door 73 and the sides of the rectangular housing defining the plenum.
  • The end wall 58 of the plenum includes an inlet 74 which is covered by a grill to allow the entry of air into the plenum at the end wall for movement along the plenum to the fan 60 under suction generated by the fan. The side walls 75 and 76 of the plenum each have an air inlet 77 which is located at the floor 11 and extending along the side of the plenum. The air intake 77 are relatively low forming less than one half of the height of the plenum so as to take air primarily from the floor level.
  • Inside each of the inlets 74 and 77 is provided a cooling coil 78 and 79 respectively. The cooling coil is thus located across the plenum so that air drawn into the respective inlet passes through the cooling coil. When supplied with cooling fluid, the cooling coil acts to reduce the temperature of the air drawn into the plenum. Downstream of the three inlets 74 and 77 is provided a heating coil 80 which is located between the inlets 77 and the fan 60. When supplied with heating fluid, the heating coil will act to apply heat to the air drawn into the fan. Thus by selecting the requisite level of heating and cooling fluid, the temperature of the air at the fan can be selected in accordance with requirements so that the air supplied to the plants on the bench trays is at the required temperature.
  • The fan 60 is mounted in the fan housing which is arranged to butt the end wall 59 of the plenum. The fan is of the centrifugal type defining a circular air inlet 81 and an annular air outlet 82 which ejects the air into the rectangular fan housing surrounding the annular outlet 82. As previously described the fan housing 51 communicates with an outlet 47 in the panel 43. The fan housing 51 has a rear wall 83 at the panel 43 which has an opening 84 controlled by flaps 85 which can be moved from a closed position preventing the escape of air from the fan housing through the opening 47 to a controlled open position which allows a controlled amount of air to escape from the fan housing to the exterior through the opening 47. The opening 84 thus acts as an air outlet for expelling air from the interior of the greenhouse pulled into the plenum through the inlets to the plenum. Makeup air into the greenhouse can be drawn through roof vents 86 shown in FIG. 5. These roof vents comprise panels along the roof ridge 26 which are hinged at the roof ridge and can be pivoted upwardly away from the roof line to provide an opening on the underside of the roof vent. The climate control system can therefore be controlled to manage the temperature within the greenhouse by drawing air along the paths marked by the arrows A so that exterior air is drawn into the roof space an expelled through the vent 47.
  • A duct 87 is also provided through the fan housing from the exterior into the plenum 55. The duct 87 is located at a position spaced from the opening 47 and provides an inlet duct connecting with the exterior through the panel 43 and connected onto the suction side of the fan in the plenum 55. The duct 87 can be controlled by a flap valve 88 so as to allow air from the exterior into the plenum drawn by the reduced pressure of the suction side of the fan. The flap valve 88 is used separately from the flap valves 85 so that in a different mode of operation air is drawn into the greenhouse through the duct 87 to increase the pressure inside the greenhouse thus requiring excess air to be expelled through the roof vent 86.
  • These different modes of operation of the natural air ventilation system using exterior air can be used in different circumstances depending upon the temperature of the exterior air and the temperature within the greenhouse. The user can operate the system to provide optimum control of temperature for maximum consistency by selecting the mode, selecting the heating, cooling and humidification systems which are optimum in the circumstances as will be well known to one skilled in this art and to provide a required amount of fresh air from the exterior.
  • The vertical duct section 53 is connected to the top wall 61 of the fan housing so as to receive pressurized air therefrom. The vertical duct 53 is arranged at the end wall 14 between the posts 21, 22 close to the panels. The vertical duct portion is formed from two parallel walls defining a front and rear wall which extend from the top surface 61 upwardly to a position closely adjacent the roof beams 28 as shown in FIG. 5. The vertical duct thus has a rectangular open bottom mouth defined by sidewalls 89 and 90 connecting the front wall 91 to the rear wall 92. The side walls 89 and 90 from their position connected with the top surface 61 of the fan housing converge inwardly to a neck section 93 and then diverge outwardly to an upper elbow 94. The elbow 94 has a horizontal bottom mouth 95 which is rectangular and connects to the top of the vertical duct portion. The elbow 94 forms a vertical mouth 96 at its upper end facing along the greenhouse from the end wall 14 toward the opposite end wall 15 along the beams 28.
  • The elbow 94 and the vertical duct section 52 are formed from rigid transparent plastics material so as to be self supporting and fixed standing upwardly from the upper surface of the fan housing. These are transparent material allows the passage of light so as to reduce the interference with the natural light through the walls of the greenhouse.
  • The horizontal duct portion 54 is formed from a tubular body of flexible plastics material which is again transparent or translucent. The tubular body has a closed outer end 97 spaced outwardly from the open mouth 96 of the elbow 94. The opposite open end of the tubular body forming the duct portion 54 is engaged onto the end face 96 of the elbow 94 by horizontal top and bottom clamping bars 98 and semi-circular end pieces. Thus the flexible tubular body forming the duct portion 54 is held substantially elongate at its open mouth. The tubular body is suspended from the roof beams 28 on straps 99 so as to simply to extend along the roof beams 28 directly over the bench. The tubular body is inflated by the air from the vertical duct portion but is prevented from forming a circular cylindrical cross section by a plurality of vertical webs 100 which are arranged along the length of a tubular body at positions spaced across the width of the body and standing in a vertical plane. Thus the body when inflated forms generally an elliptical cross section with a wider bottom surface 101 than the height between the top and bottom surfaces which are defined by the webs 100. The bottom surface has an array of holes 102 which causes the air to escape from the underside of the tubular body and flow from the tubular body down toward the growing plants. The air flow is selected relative to the total areas of holes so that the air escapes from the tubular body under sufficient pressure to generate a velocity at the plants of the order of 50 ft/min which is known in the art to provide suitable gas exchange at the plant surfaces
  • In the fan housing is also provided a water droplet injection nozzle or fogging system schematically indicated at 103 which includes a control valve 104 for controlling the injection of water droplets into the valve housing from a water supply through a chase 105 located in the chamber underneath the sill 42. The control system is shown schematically in FIG. 2 and comprises a controlled unit 106 which is arranged to control the supply of cooling fluid via cool control 107, to control the supply of heating fluid through a heating control 108, to control the position of the vents at the roof and in the fan housing through a vent motor control 109 and to control the supply of water droplets through a valve control 110. The control unit receives inputs from one or more sensors 111 which detect the temperature and humidity of the air at the plants.
  • The humidity of the air can also be carefully controlled either by de-humidifying the air or by adding water droplets at the nozzles 103. Dehumidifying the air is effected by sub-cooling the cooling coils 78 so that the cooling coil 78 is cooled to a lower temperature than the cooling coils 79. This acts to sub cool the air passing through the cooling coil 78 which extracts moisture from the air which is then suitably collected at the cooling coil and run to drain. Thus the cooling effect of the cooling coil 79 is relatively reduced in order to provide a reduction in temperature and the cooling coil 78 of the air which is lower than the resultant air temperature required thus acting to extract more moisture at the cooling coil 78 than would be obtained if all three cooling coils were run at the same cooling temperature. In extreme conditions of high humidity requiring a reduction in humidity for the interior of the greenhouse, it may be necessary to run the cooling coil 78 and at the same time to run the heating coil to reheat the air to the required temperature prior to pumping by the fan back to the horizontal discharge duct 54.
  • Humidification of the air is effected simply by the spraying of water droplets in a fogging system from the nozzle 103 within the fan housing. Water is supplied to the nozzles at a pressure of the order of 1000 PSI so as to form small droplets from the fogging system which are carried from the fan housing to the duct while evaporating in the air being transported through the duct for discharge into the greenhouse above the plants.
  • The use of the individual duct for each bench ensures that each bench is supplied with the same air in the same quantity and pattern since each of the air handling systems is managed symmetrically. The use of relatively flat wide discharge duct above the bench ensures that the air is deposited with little or no pressure downwardly over the full area of the bench so that each location on the bench receives substantially the same air movement from the duct. The duct is slightly narrower than the width of the bench but the location of holes around the hole whole of the underside of the duct 54 allows air to be expelled both directly downwardly and slightly to the sides of the duct.
  • The lighting system including the rows 23 of lighting elements comprises a plurality of individual light fixtures 112 mounted on a rail 113. These lighting fixtures includes a reflector and bulb but the ballast unit for the individual lighting fixtures are collected together in a cabinet 114 and 115. The control unit and the electrical connections and control elements necessary therefore are provided in plurality of cabinets 116, 117 and 118. These cabinets are conveniently located as shown in FIG. 8 in the alley 17.
  • As previously described the structure of the greenhouse is formed by panels which are inserted between posts where the panels are carried in the channels defined between the tube member and the cap. The cabinets are thus conveniently formed as panels which are arranged to be inserted in the alleyway between posts 120, 121 and 122 respectively. Thus the cabinet 114 and the cabinet 117 together form a panel with seals at the top and sides which allow the panels to co-operate with the channels of the posts 120 and 121 and the mullion piece 124 at the top of the panels. The bottom of the cabinets is raised from the floor and sits on a stand 123 at the bottom with a rear panel of the stand closing the area underneath the cabinet against communication if air between the alley and the greenhouse.
  • In a similar manner the cabinets 118 and 115 are mounted in a panel 125 which is located between the posts 121 and 122. Again the panels include top and side seals which engage the posts and mullion bar. The ballast cabinets 114 and 115 generate significant heat so they include inlet vents 126 for allowing fan generated air flow cooling.
  • Thus the pre-formed system of the greenhouse is maintained in that modular panels can be supplied for mounting in the location between the posts in the conventional manner previously described so that it is no longer necessary to manufacture or supply separate electrical cabinets and the location of those cabinets is conveniently provided for in the alley within the panels. Similarly the cabinet 116 is mounted in the panel 127 in the wall 16. Because the cabinet 116 is located in the exterior wall 16, it is mounted wholly within the structure so that the panel runs along the back of the cabinet 116. The cabinets 114. 117, 118 and 115 may be mounted as shown so that they project through the respective panel so as a portion of the cabinet is on each side of the panel. Each of the cabinets has a door or doors which is accessible from the alley 17.
  • The electrical cabinets contain the electrical components provided in the control system and all other electrical elements including a main power supply and a backup power supply in the event of an initial power failure.
  • In a similar manner, each of the doors 18 and 19 is formed as a panel 126, 127 so that it can be readily installed as part of the curtain wall system by mounting on the posts of the curtain wall system in the walls 16 and 15 respectively. Thus the panels 126 and 127 include side panel portions 128 and a top panel portion 129 which surround the door and form the panel into a predetermined dimension matching the width between the posts and matching a required spaced between the floor and a mullion bar. The remaining spaces between the posts can be formed by transparent panels 31 as previously described or by insulated non transparent filler panels 130.
  • In FIG. 8 is shown one possible location of the water pump system 131 for supplying water under pressure of the order of 1000 PSI for supplying the water nozzles for the humidification system. Additional water nozzles (not shown) can also be provided in the area underneath the horizontal discharge ducts 54 for increased humidification levels and/or in the area of the roof vents so as to provide water evaporative cooling of the air. The control system 110 previously described controls the supply of water from the pump system 131 to the individual nozzles so as to provide the required effect either within the fan housing or within the other areas of the greenhouse as is required and is known to persons skilled in the art.
  • Turning now to FIG. 10, the pump system 131 is shown in more detail which comprises a pump 132 and an accumulator 133. The accumulator 133 includes a bladder 134 with nitrogen contained within the bladder injected from a pressure nozzle 135. The accumulator tank 133 is designed to receive and contain the water under the high pressure of the order of 1000 PSI for supplying the injection nozzles. The outlet to the nozzles is indicated at 136. Water supplied to the pump 132 at an inlet line 140 is controlled by a valve 141 and a pressure sensor 142 and is pumped to the pressure of the order of 1000 PSI which is pumped into the accumulator through a line 143 controlled by valves 137 until the pressure within the accumulator as detected by a pressure valve 138 reaches the required maximum operating pressure at which time the pump is shut off. Water under pressure is then supplied from the accumulator under the control of the valve arrangements 139 to the nozzles as required. The outlet pressure is maintained above a predetermined minimum as detected by a pressure detector 138 and when the minimum is reached the pump is reactivated to pump more water into the accumulator. An over pressure valve 145 can detect running of the pump beyond a required pressure and switches the output of the pump to a drain line 146.
  • In FIG. 11 is shown an alternative arrangement which uses many of the components of the previously described arrangement but is modified to provide a simplified and therefore less expensive construction which can be used where a reduced cost is required. In this arrangement, the direction of operation of the fan 60 is reversed so that it acts to draw air in through the opening 84 so that the opening 84 becomes the air inlet into the plenum. Also in this arrangement, the vertical duct and the horizontal outlets is removed so that the air driven into the plenum and exits through the openings 74 and 77 so that these openings become outlets rather than inlets.
  • In order to provide inexpensive cooling, the refrigerated cooling coils are omitted and are replaced by evaporative cooling elements 178 and 179 of a known construction in which water is fed into a suitable support element through which the air passes as it moves toward the outlets 74 and 77 to effect evaporation of the water on eth support element to cause both cooling and humidification of the air entering the greenhouse. The elements are generally planar members with the air passing through at right angles and the water being trickled through the members.
  • As a further modification (not shown) which can provide a reduced production cost, the plenum can be provided as a separate element from the bench so that the bench is supported on simple legs and the plenum merely a rectangular duct without and structural requirements.
  • Since various modifications can be made in my invention as herein above described, and many apparently widely different embodiments of same made within the spirit and scope of the claims without departing from such spirit and scope, it is intended that all matter contained in the accompanying specification shall be interpreted as illustrative only and not in a limiting sense.

Claims (19)

1. A greenhouse comprising:
an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
a plurality of elongate benches located within the interior and arranged to provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
an air handling system for conditioning the air within the interior including at least one air moving fan, at least one interior air intake, at least one interior air outlet, at least one exterior vent and at least one component for changing air temperature;
the exterior wall structure including a first side and a second side wall opposite to the first side wall with each of the first and second side walls defined by a plurality of vertical posts at spaced positions along the length of the side wall defining equal spans between each of the plurality of vertical posts and the next with transparent panels arranged to substantially fill the span between the posts;
each bench having a bench support for the bench located underneath the bench;
the benches being arranged at spaced positions along the first side wall such that each bench has one end adjacent said first side wall such that the bench and the bench support therefor each extend from the first side wall at right angles thereto toward the second side wall;
each bench being associated with a respective one of the spans such that the number of spans is equal to the number of benches and such that the bench support of each bench is located between the posts of the associated respective one of the spans.
2. The greenhouse according to claim 1 wherein the width of each bench of the plurality of benches is substantially equal to the width of the spans.
3. The greenhouse according to claim 1 wherein the side walls at right angles to said one side wall each have the same spans between the posts thereof and the length of each bench from said one side wall is equal to a multiple of the spans.
4. The greenhouse according to claim 1 wherein each of the benches is located such that it has one end at said one side wall and has an opposed end spaced from said opposite wall.
5. The greenhouse according to claim 1 wherein the span equals six feet.
6. The greenhouse according to claim 1 wherein the posts and panels form a curtain wall construction in which the panels are attached at their edges to the posts and fully extend across the span therebetween without intermediate support elements.
7. A greenhouse comprising:
an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
a plurality of elongate benches located within the interior and arranged to provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior;
an air handling system for conditioning the air within the interior including at least one air moving fan, at least one interior air intake, at least one interior air outlet, at least one exterior vent and at least one component for changing air temperature;
the exterior wall structure including a first side and a second side wall opposite to the first side wall with each of the first and second side walls defined by a plurality of vertical posts at spaced positions along the length of the side wall defining equal spans between each of the plurality of vertical posts and the next with transparent panels arranged to substantially fill the span between the posts;
the benches being arranged at spaced positions along the first side wall such that each bench has one end adjacent said first side wall and extends therefrom at right angles thereto toward the second side wall;
each bench being associated with a respective one of the spans between the posts of said first side wall and arranged such that the number of spans is equal to the number of benches;
wherein the width of each bench is substantially equal to the width of the spans;
and wherein at least some of the benches are mounted for side to side sliding movement and at least one of the benches has a width which is narrower than that of the spans so as to allow a space between the benches for user access.
8. The greenhouse according to claim 1 wherein the side walls at right angles to said one side wall each have the same spans between the posts thereof and the length of each bench from said one side wall is equal to a multiple of the spans.
9. The greenhouse according to claim 1 wherein each of the benches is located such that it has one end at said one side wall and has an opposed end spaced from said opposite wall.
10. The greenhouse according to claim 1 wherein the span equals six feet.
11. The greenhouse according to claim 1 wherein the posts and panels form a curtain wall construction in which the panels are attached at their edges to the posts and fully extend across the span therebetween without intermediate support elements.
12. A greenhouse comprising:
an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior; and
and an air handling system comprising:
an air intake plenum having at least one air intake,
a fan connected to the plenum,
an outlet duct connected to the fan having an air outlet for expelling air from the duct into the interior of the greenhouse,
and at least one air conditioning component for conditioning the air transported from the plenum to the duct by the fan;
wherein the plenum includes at least two inlets and wherein there is provided at each of the inlets within the duct a cooling coil for cooling the air;
and wherein the supply of cooling fluid to each of the coils is controlled by a cooling system which is arranged to effect sub-cooling at one of the coils for de-humidifying the air.
13. A greenhouse comprising:
an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior; and
and an air handling system comprising:
an air intake plenum having at least one air intake,
a fan connected to the plenum,
an outlet duct connected to the fan having an air outlet for expelling air from the duct into the interior of the greenhouse,
and at least one air conditioning component for conditioning the air transported from the plenum to the duct by the fan;
wherein the plenum contains fogging nozzles for applying water droplets to the air;
and wherein the fogging nozzles are supplied with water under pressure from a fogging water supply system including a water pump operable to supply water under pressure to an accumulator tank having a gas membrane, the tank being arranged to supply the water under pressure to the nozzles and including a pressure control valve arranged to operate the pump to maintain the pressure within the tank between upper and lower pressure limits so as operate the pump only when the lower pressure limit is reached.
14. A greenhouse comprising:
an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior; and
and an air handling system comprising:
an air intake plenum having at least one air intake,
a fan connected to the plenum,
an outlet duct connected to the fan having an air outlet for expelling air from the duct into the interior of the greenhouse,
and at least one air conditioning component for conditioning the air transported from the plenum to the duct by the fan;
wherein the fan is mounted in a fan housing with the fan housing at one end of the bench arranged to be located at one exterior wall of the greenhouse and wherein the fan housing has a connection for exterior air arranged to extend through said one exterior wall.
15. A greenhouse comprising:
an exterior wall structure which includes primarily transparent panels allowing entry to an interior of natural light;
a bench arranged to be located within the interior and provide support surfaces for supporting crop materials thereon for receiving the natural light and growing within the interior; and
and an air handling system comprising:
an air intake plenum having at least a part thereof located underneath the bench;
at least one air outlet for expelling air into the interior of the greenhouse;
a fan connected to the plenum for driving air in the plenum from the inlet to the outlet;
and at least one air conditioning component in the part of the plenum underneath the bench for conditioning the air;
wherein the fan is mounted in a fan housing with the fan housing at one end of the bench arranged to be located at one exterior wall of the greenhouse and wherein the air inlet is arranged to extend through said one exterior wall.
16. The greenhouse according to claim 15 wherein the air conditioning component comprises an air cooling device.
17. The greenhouse according to claim 15 wherein the air conditioning component comprises a plurality of air cooling devices located at spaced positions within the part of the plenum underneath the bench.
18. The greenhouse according to claim 15 wherein the at least one air outlet comprises a plurality of outlets at spaced positions on the part of the plenum under the bench.
19. The greenhouse according to claim 18 wherein the at least one air conditioning component comprises a plurality of evaporative air cooling devices each located at a respective one of the outlets.
US11/233,371 2003-07-10 2005-09-23 Structure of a greenhouse Abandoned US20060059772A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/233,371 US20060059772A1 (en) 2003-07-10 2005-09-23 Structure of a greenhouse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/616,296 US7234270B2 (en) 2003-07-10 2003-07-10 Structure of a greenhouse
US11/233,371 US20060059772A1 (en) 2003-07-10 2005-09-23 Structure of a greenhouse

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/616,296 Continuation-In-Part US7234270B2 (en) 2003-07-10 2003-07-10 Structure of a greenhouse

Publications (1)

Publication Number Publication Date
US20060059772A1 true US20060059772A1 (en) 2006-03-23

Family

ID=33564733

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/616,296 Expired - Fee Related US7234270B2 (en) 2003-07-10 2003-07-10 Structure of a greenhouse
US11/233,371 Abandoned US20060059772A1 (en) 2003-07-10 2005-09-23 Structure of a greenhouse

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/616,296 Expired - Fee Related US7234270B2 (en) 2003-07-10 2003-07-10 Structure of a greenhouse

Country Status (2)

Country Link
US (2) US7234270B2 (en)
CA (1) CA2467317C (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100257878A1 (en) * 2007-11-08 2010-10-14 The State of Israel, Ministry of Agriculture & Rural Development, Agriculture Research Organizati Method and system for heating and dehumidifying
US20110214364A1 (en) * 2010-03-04 2011-09-08 Michael Fuller Architects, Pc Building with integrated natural systems
US20200359572A1 (en) * 2018-01-11 2020-11-19 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
US11528851B2 (en) * 2020-11-05 2022-12-20 Haier Us Appliance Solutions, Inc. Indoor garden center with a moisture management system
US11581734B2 (en) 2019-10-28 2023-02-14 Lancium Llc Methods and systems for adjusting power consumption based on a dynamic power option agreement
US11611219B2 (en) 2018-09-14 2023-03-21 Lancium Llc System of critical datacenters and behind-the-meter flexible datacenters
US11650639B2 (en) 2019-01-11 2023-05-16 Lancium Llc Redundant flexible datacenter workload scheduling
US11669144B2 (en) 2018-09-14 2023-06-06 Lancium Llc Methods and systems for distributed power control of flexible datacenters
US11669920B2 (en) 2020-02-27 2023-06-06 Lancium Llc Computing component arrangement based on ramping capabilities
US11682902B2 (en) 2018-10-30 2023-06-20 Lancium Llc Managing queue distribution between critical datacenter and flexible datacenter
US11868106B2 (en) 2019-08-01 2024-01-09 Lancium Llc Granular power ramping
US11907029B2 (en) 2019-05-15 2024-02-20 Upstream Data Inc. Portable blockchain mining system and methods of use
US11961151B2 (en) 2022-07-19 2024-04-16 Lancium Llc Modifying computing system operations based on cost and power conditions

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1025706C2 (en) * 2004-03-12 2005-09-20 Klimrek I E B V Floor of a grow room.
EP1707912A1 (en) * 2005-04-01 2006-10-04 Fiwihex B.V. Heat exchanger and greenhouse
NL1029280C1 (en) * 2005-06-17 2006-12-19 Fiwihex B V Housing with a cooling.
NL1032779C2 (en) * 2005-10-31 2008-08-05 Econcern B V Greenhouse operating method with enriched carbon dioxide atmosphere, involves cooling greenhouse or dehumidifying greenhouse air and supplying ambient air at given rate
NL1030511C2 (en) * 2005-11-24 2007-05-25 Nedap Nv Crop exposure.
FR2946499A1 (en) * 2009-06-12 2010-12-17 Entpr P Richardeau Installation for maintenance of hydrous deficit of atmosphere of chamber for cultivation of plant, has treatment and control unit emitting control signals to control starting of outside air intake unit
US8839551B2 (en) * 2010-07-01 2014-09-23 James J. Swann Self-regulating greenhouse
JP6256821B2 (en) * 2012-08-23 2018-01-10 パナソニックIpマネジメント株式会社 Agricultural house
KR101429350B1 (en) * 2012-09-21 2014-08-13 경상북도(농업기술원) system for consecutively cultivating organic ginseng using multistage growth cabinet
US20140259997A1 (en) * 2013-03-15 2014-09-18 PLACE, Inc. Life to waste to energy complex
US20170354100A1 (en) * 2016-06-10 2017-12-14 Jason Snyder Safety Grow Pod
US11540452B2 (en) * 2016-12-14 2023-01-03 Mankaew MUANCHART Air movement control and air source device for cultivation
US10674680B2 (en) * 2017-08-04 2020-06-09 Horticultural Solutions Ltd. Fan coil for greenhouse
CN109168773A (en) * 2018-10-22 2019-01-11 山东省农业科学院作物研究所 A kind of multilayer liftable culturing frame that Wheat Maize seedling cultivation photo-thermal is controllable
KR20210088335A (en) * 2020-01-06 2021-07-14 엘지전자 주식회사 Plants cultivation apparatus
US20220183235A1 (en) * 2020-12-10 2022-06-16 LogiCO2 International AB Method, device and use of ventilation system for growing plants
US20230389495A1 (en) * 2022-06-01 2023-12-07 Haier Us Appliance Solutions, Inc. System and method for priming an indoor gardening appliance

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1753980A (en) * 1928-05-17 1930-04-08 Baumgartner Emil Means for utilizing the waste space in hothouses
US3913758A (en) * 1973-06-15 1975-10-21 Green Thumb Corp Horticulture apparatus
US4047328A (en) * 1974-07-26 1977-09-13 Hygroponics, Inc. Greenhouse
US4064648A (en) * 1976-02-23 1977-12-27 Roll-Out Insulation Systems, Inc. Weather responsive insulation system for greenhouses and the like
US4146993A (en) * 1976-11-17 1979-04-03 Freeman Sr Leslie C Lighting system for facilitating plant growth
US4321775A (en) * 1979-06-07 1982-03-30 Emerson Hiram J Greenhouse construction
US4567732A (en) * 1983-05-25 1986-02-04 Landstrom D Karl Method and system for controlling the environment in a greenhouse
US4567690A (en) * 1983-11-10 1986-02-04 Murrell K Dale Selectively closed modular cultivation apparatus
US4837971A (en) * 1986-06-13 1989-06-13 501 Visser 's-Gravendeel Holding B.V. Apparatus or greenhouse for growing of plants
US5438794A (en) * 1992-04-10 1995-08-08 Wi; Gye-Sung Farming system for cultivating crops
US7051476B1 (en) * 2005-03-02 2006-05-30 Craul Donald R Plant bench for use in a greenhouse or nursery structure, and a greenhouse or nursery structure including the plant bench

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445426A (en) * 1981-06-12 1984-05-01 Acme Engineering & Manufacturing Corporation Slanted housing fan enclosure
US4737103A (en) * 1985-06-24 1988-04-12 Siccardi Frank J Fresh air monitoring and controls relating thereto
FR2586526A1 (en) * 1985-08-30 1987-03-06 Runser Jeannette Greenhouse shelf device
CA1260270A (en) * 1988-02-18 1989-09-26 Michele Mazzuocco Framework for greenhouse bench top
US5279609A (en) * 1992-10-30 1994-01-18 Milton Meckler Air quality-temperature controlled central conditioner and multi-zone conditioning
JP2000069858A (en) * 1998-07-16 2000-03-07 Satoshi Takano Method for culturing plant in green house and apparatus therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1753980A (en) * 1928-05-17 1930-04-08 Baumgartner Emil Means for utilizing the waste space in hothouses
US3913758A (en) * 1973-06-15 1975-10-21 Green Thumb Corp Horticulture apparatus
US4047328A (en) * 1974-07-26 1977-09-13 Hygroponics, Inc. Greenhouse
US4064648A (en) * 1976-02-23 1977-12-27 Roll-Out Insulation Systems, Inc. Weather responsive insulation system for greenhouses and the like
US4146993A (en) * 1976-11-17 1979-04-03 Freeman Sr Leslie C Lighting system for facilitating plant growth
US4321775A (en) * 1979-06-07 1982-03-30 Emerson Hiram J Greenhouse construction
US4567732A (en) * 1983-05-25 1986-02-04 Landstrom D Karl Method and system for controlling the environment in a greenhouse
US4567690A (en) * 1983-11-10 1986-02-04 Murrell K Dale Selectively closed modular cultivation apparatus
US4837971A (en) * 1986-06-13 1989-06-13 501 Visser 's-Gravendeel Holding B.V. Apparatus or greenhouse for growing of plants
US5438794A (en) * 1992-04-10 1995-08-08 Wi; Gye-Sung Farming system for cultivating crops
US7051476B1 (en) * 2005-03-02 2006-05-30 Craul Donald R Plant bench for use in a greenhouse or nursery structure, and a greenhouse or nursery structure including the plant bench

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100257878A1 (en) * 2007-11-08 2010-10-14 The State of Israel, Ministry of Agriculture & Rural Development, Agriculture Research Organizati Method and system for heating and dehumidifying
US8453470B2 (en) * 2007-11-08 2013-06-04 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization, (A.R.O.), Volcani Center Method and system for heating and dehumidifying
US20110214364A1 (en) * 2010-03-04 2011-09-08 Michael Fuller Architects, Pc Building with integrated natural systems
US8371073B2 (en) * 2010-03-04 2013-02-12 Michael Fuller Architects, Pc Building with integrated natural systems
US20200359572A1 (en) * 2018-01-11 2020-11-19 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
US11678615B2 (en) * 2018-01-11 2023-06-20 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
US11611219B2 (en) 2018-09-14 2023-03-21 Lancium Llc System of critical datacenters and behind-the-meter flexible datacenters
US11669144B2 (en) 2018-09-14 2023-06-06 Lancium Llc Methods and systems for distributed power control of flexible datacenters
US11949232B2 (en) 2018-09-14 2024-04-02 Lancium Llc System of critical datacenters and behind-the-meter flexible datacenters
US11682902B2 (en) 2018-10-30 2023-06-20 Lancium Llc Managing queue distribution between critical datacenter and flexible datacenter
US11650639B2 (en) 2019-01-11 2023-05-16 Lancium Llc Redundant flexible datacenter workload scheduling
US11907029B2 (en) 2019-05-15 2024-02-20 Upstream Data Inc. Portable blockchain mining system and methods of use
US11868106B2 (en) 2019-08-01 2024-01-09 Lancium Llc Granular power ramping
US11594888B2 (en) 2019-10-28 2023-02-28 Lancium Llc Methods and systems for adjusting power consumption based on a fixed-duration power option agreement
US11581734B2 (en) 2019-10-28 2023-02-14 Lancium Llc Methods and systems for adjusting power consumption based on a dynamic power option agreement
US11669920B2 (en) 2020-02-27 2023-06-06 Lancium Llc Computing component arrangement based on ramping capabilities
US11528851B2 (en) * 2020-11-05 2022-12-20 Haier Us Appliance Solutions, Inc. Indoor garden center with a moisture management system
US11961151B2 (en) 2022-07-19 2024-04-16 Lancium Llc Modifying computing system operations based on cost and power conditions

Also Published As

Publication number Publication date
CA2467317C (en) 2009-10-06
US20050005528A1 (en) 2005-01-13
US7234270B2 (en) 2007-06-26
CA2467317A1 (en) 2005-01-10

Similar Documents

Publication Publication Date Title
US20060059772A1 (en) Structure of a greenhouse
US20070163170A1 (en) Lighting system for a greenhouse
US10278338B2 (en) Greenhouse and forced greenhouse climate control system and method
US7228657B2 (en) Climate control for a greenhouse
US8707617B2 (en) Greenhouse and forced greenhouse climate control system and method
US11528852B2 (en) Greenhouse sidewall ventilation system
KR101779695B1 (en) Natural circulation type airhouse using geothermy
CA2521309A1 (en) Structure of a greenhouse
KR20210137389A (en) Cultivating apparatus
EP1599086A1 (en) System for cultivation of plants
NL2027017B1 (en) A greenhouse
JPH0327412Y2 (en)
JPH03127917A (en) Sheet greenhouse

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTROLLED ENVIROMENTS LIMITED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRAULT, DAVID;TURKEWITSCH, ALEX;GLERCKE, RON;AND OTHERS;REEL/FRAME:017339/0987;SIGNING DATES FROM 20051121 TO 20051209

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION