US20080034876A1 - Robust low profile shaker - Google Patents

Robust low profile shaker Download PDF

Info

Publication number
US20080034876A1
US20080034876A1 US11/974,337 US97433707A US2008034876A1 US 20080034876 A1 US20080034876 A1 US 20080034876A1 US 97433707 A US97433707 A US 97433707A US 2008034876 A1 US2008034876 A1 US 2008034876A1
Authority
US
United States
Prior art keywords
assembly
moveable
coil
moveable assembly
shaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/974,337
Inventor
Randolph Crowson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/974,337 priority Critical patent/US20080034876A1/en
Publication of US20080034876A1 publication Critical patent/US20080034876A1/en
Priority to US12/590,645 priority patent/US8061210B2/en
Priority to US13/300,549 priority patent/US20120060616A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/04Monodirectional test stands
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/10High frequency vibratory devices

Definitions

  • This invention relates generally to an apparatus for converting electrical signals into physical motion through the use of an electromagnetic transducer.
  • the present invention provides a robust, low profile shaker system having an increased off center load acceptance which may be easily placed under an object in order to impart vibrational motion in response to electrical signals from a signal source.
  • U.S. Pat. No. 6,389,900 shows a shaker design wherein the shaker is isolated from all forces on the test subject that are not aligned with the direction of intended motion or offset from the center of the coil. This is typically accomplished by coupling the two sides with a long thin rod called a stinger. The resulting assembly is complex, large and expensive.
  • Some shakers use a more integrated approach in which two plate style flexures are used to add stiffness in the transverse direction (perpendicular to the direction of intended motion) and support forces which are aligned with the intended direction of motion but offset from the coil center (moments). Examples of such systems can be found in the article “Electrodynamic Shaker Fundamentals” by George Fox Lang ( Sound and Vibration, April 1997 pgs 1-8) and in the Labworks Inc “Shaker Engineering Info.” The two plates must be separated by a large distance to provide adequate moment stiffness. This adds complexity, limits armature displacement and greatly adds to the height of the system.
  • Shakers also typically use flexible conductors to transmit energy from the actuator body or housing to the moving armature. These flexible conductors are prone to failure due to fatigue.
  • the current invention encompasses an electrodynamic transducer apparatus (using a typical voice coil) having a moveable armature integrated with a stabilized base platform (stator) to produce a simple, inexpensive, thin, and generally small device that is able to withstand large loads and moments in any direction without damage.
  • the apparatus also maintains high efficiency when operated to shake or vibrate an object, makes use of reliable flex free electrical paths, and may be inconspicuously installed beneath a subject, such as a chair, couch, seat, recliner, platform or other similar object.
  • a shaker apparatus having a moveable armature, a magnet and ferromagnetic material stator assembly, as well as a distributed spring configuration operative between the armature and stator which reduces complexity and axial height and provides increased moment stiffness (off center load support).
  • elastomer load bearing and armature positioning springs are located on the periphery of, and integrated with the voice coil magnetic stator structure, rather than being situated separately above and/or below.
  • the springs provide increased support on the outer edges of the armature or top mounting plate allowing the shaker to withstand large moments without damage.
  • Cylindrical springs are used with rigidly mounted internal pins to increase the stiffness in all directions perpendicular to the axis of the coil (transverse directions).
  • the overall height (profile) of the shaker can be kept to a minimum, making it ideal for placing under objects for imparting vibrational motion.
  • the voice coil is wound on a robust bobbin, which can support large armature transverse loads without damage. Close positioning of the voice coil to the armature top plate or mounting plate makes the assembly insensitive to moment induced tilting.
  • the air gap between the iron core outer diameter (OD) and coil bobbin inner diameter (ID) is substantially less (on the order of one-half) than the air gap between the coil OD and outer pole ID. This avoids contact between the vulnerable coil and the outer ring of the stator in the event of a large transverse load.
  • material with a low coefficient of friction and high wear resistance is used between the coil bobbin and iron core.
  • This material can be adhesively bonded to the iron core, the bobbin or both, and is configured to allow repeated contact with minimal damage.
  • the power connector or power leads exit the assembly from the moving portion (armature) which contains the voice coil. This avoids the conventional flexible connection between the coil and the frame or stationary portion of prior art shakers.
  • multiple opposing coil-magnet pairs are operatively configured on the armature and stator respectively in a non-voice coil arrangement to produce a force which increases or decreases the distance between the armature and stator.
  • elastomer load bearing and coil positioning springs are located on the periphery of, and integrated with the magnetic stator structure, rather than being situated separately above and/or below. The spring(s) provide increased support on the outer edges of the armature or top mounting plate allowing the shaker to withstand large moments. Cylindrical springs are used with rigidly mounted internal pins to increase the stiffness in all directions perpendicular to the axis of the coil (transverse directions).
  • a plurality of springs, or a uniformity of material with springlike characteristics is interspersed throughout the shaker body in areas not occupied by opposing coil-magnet pairs.
  • FIG. 1 is a side cutaway view of the present invention.
  • FIG. 2 is an exploded view of the present invention shown in FIG. 1 .
  • FIG. 3 is a side cutaway view of another embodiment of the present invention.
  • FIG. 4 is an exploded view of another embodiment of the present invention.
  • FIG. 5 is a side cutaway view of the embodiment of the present invention shown in FIG. 4 .
  • FIG. 6 is an exploded view of another embodiment of the present invention showing multiple coil-magnet pairs.
  • FIG. 7 is a side cutaway view of the embodiment of the present invention shown in FIG. 6 .
  • the present invention can find utility in a variety of implementations without departing from the scope and spirit of the invention, as will be apparent from an understanding of the principles that underlie the invention.
  • the present invention is best described as used in conjunction with items of furniture and entertainment systems (including home audio/video equipment, theater or other large public venue equipment, demonstration, simulation, or game systems, etc) such that the shaker can vibrate the home furnishings in response to electrical signals from the entertainment system, however it may find utility when used with a plethora of systems or devices which are to be shaken or vibrated, such as laboratory test subjects, dance floors, platforms etc.
  • shaker 100 comprises a moveable armature portion 105 operatively mounted to a base stator assembly 110 to accomplish vibrational movement.
  • the armature assembly 105 of exemplary shaker apparatus 100 comprises a top plate 5 , coil bobbin 3 , and voice coil 6 .
  • Voice coil 6 is wound about and adhesively joined to the side portion of the coil bobbin 3 . It will also be understood and appreciated that bobbin 3 and voice coil 6 can be integrated as a singular piece according to the current invention.
  • electrical signals eg.
  • the armature assembly is preferably assembled with rivets but may be assembled using adhesive, tack welding, fasteners, or other joining means or combination of joining means. It will be understood and appreciated that many different configurations of the armature, voice coil, and integrated electrical connectors are possible without departing from the spirit and scope of the present invention.
  • the stator assembly 110 of exemplary shaker apparatus 100 comprises a integrated base plate-bottom pole 9 , outer pole 18 , magnet 8 , and top pole 4 .
  • Integrated base plate-bottom pole 9 is made of steel or other material with high magnetic permeability (generally known as ferromagnetic materials).
  • Integrated base plate-bottom pole 9 may be a combination of a rigid support material (base plate) including, but not limited to metals, polymers, plastics, glass or fiberglass materials, ceramic materials, and a smaller ferromagnetic bottom pole.
  • Outer pole 18 (a ring in one embodiment of the present invention) and top pole 4 are made of steel or other ferromagnetic material.
  • Magnet 8 can be a singular piece or multiple pieces of any magnetic material.
  • the stator assembly is preferably assembled with adhesive but can be assembled using welding fasteners or other joining means.
  • Many of the stator components including integrated base plate-bottom pole 9 and outer pole 18 , may be manufactured as a singular structure. It will be appreciated that the integrated base plate-bottom pole 9 , outer pole 18 , and top pole 4 may be made of the same material, and integrated with the magnet 8 .
  • the bottom pole 9 , outer pole 18 , and top pole 4 are shaped and fashioned such that magnet 8 and coil 6 may be closely positioned and the magnetic field of magnet 8 focused substantially through coil 6 to maximize vibrating force of the shaker.
  • Bushing material 7 is fixedly or adhesively attached to top pole 4 in order to support excessive transverse forces between the armature and the stator assembly (due to transverse forces exerted on the top plate 5 ).
  • Bushing 7 is generally a low coefficient of friction/wear resistant material (such as teflon in the example system) and is used between the ID 2 of coil bobbin 3 and the OD 1 of the top pole 4 .
  • Elastomer load bearing and armature positioning springs 17 are located on the periphery of, and integrated with the stator and/or armature structure, rather than being situated separately above and/or below the moveable assembly.
  • This peripheral spring configuration provides increased support on the outer edges of the top plate of the armature allowing the shaker to withstand large moments without damage.
  • Cylindrical springs are used in the current example system with rigidly mounted internal pins 46 to increase the stiffness in all directions perpendicular to the axis of the coil (transverse directions). As such, the shaker of the current invention can be implemented easily in a home entertainment setting without requiring that the legs of furniture or other object be placed directly on the center of the top plate. Looking now to FIG.
  • the armature assembly is supported by one or more springs 17 (four are used in the current example system, one substantially in each corner of the shaker assembly) which are fixedly attached to the underside 19 of the top plate 5 and the top of the bottom plate 9 .
  • the springs 17 are preferably made to be stiff in the transverse direction and soft in the direction of vibration by pins 46 rigidly mounted to or integrated with bottom plate 9 .
  • the pins 46 may be pressed into holes in the bottom plate 9 , fastened with screws, welded in place, or simply fabricated with plate 9 to be a singular base structure during manufacture.
  • the pins 46 extend a distance within the springs equal to the spring height, minus the maximum armature displacement (typically 0.25 inches for a shaker assembly fabricated to support 200 pounds).
  • pins 46 are optional because the coil bobbin bushing 7 can carry the transverse loads, however added stability and less bushing wear can be achieved by including pins 46 .
  • spring(s) 17 may be fixedly attached (i.e. adhesively bonded or mechanically fastened) to either or both of the top and bottom plates of the shaker, or may be assembled in a modular/removable fashion (for easy serviceability, shipping, etc of the shaker) such that the weight and pressure of an object placed on the shaker is relied on to keep the shaker assembly together during operation.
  • the pins 46 , integrated base plate-bottom pole 9 , and outer pole 18 may be machined or cast as a singular member, or may be assembled in a modular nature as described herein.
  • the elastomer cylindrical springs can be replaced with metal coil springs, wave springs, conical washer springs or the like, without departing from the spirit or scope of the present invention.
  • the springs may be replaced by a plurality of springs, or a uniformity of material with springlike characteristics (i.e. foam spring, Polyurethane, silicone, etc) interspersed throughout the shaker body in areas not occupied by opposing coil-magnet pairs.
  • Other steel-magnet designs may be used such as a conventional ring magnet structure with magnet material located on the outside of the voice coil, a ferromagnetic inner pole, smaller coil diameter and a corresponding ring shaped top pole on the outside of the coil and above the magnet.
  • the spring assembly may comprise one or more springs or springlike materials and generally operates to position the armature relative to the stator, and to flexibly support the armature (especially about the periphery of the shaker top plate) in the presence of a load, even if such load is positioned off the center of the top plate.
  • the armature assembly 105 is positioned such that the voice coil 6 is suspended within the air gap of the DC field generated by the integrated base plate-bottom pole 9 , magnet 8 , top pole 4 , and outer pole 18 assembly.
  • the armature assembly is designed to vibrate or move in the direction of the voice coil 6 axis (the “z” axis) relative to the steel-magnet assembly, when AC electrical current is passed through the voice coil 6 .
  • the presence of AC current in voice coil 6 generates vibratory force and motion along the Z-axis in shaker 100 .
  • an amplifier will be necessary in most cases to generate sufficient force to vibrate a large and/or heavy object. For instance, 50 watts RMS power may be required for a shaker that is 5 inches long, 5 inches wide and 1 inch tall to vibrate a 100 lb mass with a reasonable amplitude.
  • an appropriate amplification and power conditioning system may be integrated with the shaker apparatus 100 , either externally, internally, or a combination of both in order to present a desired amount of current to drive the shaking motion of the apparatus.
  • the coil portion may involve traces in a printed circuit board or surface mounted on or inside (embedded) the armature plate in order to affect vibratory motion in the shaker. Additionally, the coil portion may be wound without the aid of a rigid bobbin structure, simply being held by adhesives, bonding agents, or the like in order to maintain a desired shape and affixed to the top plate. All that is required is that coil portion 6 be configured such that a vibratory force is produced in the presence of magnet 8 when AC current is passed through coil portion 6 .
  • the shaker assembly is intended to be placed on a stiff surface while the subject 10 (such as an object or item of furniture) is placed on or attached to the top of the top plate 5 .
  • the size and shape of various components and portions of the armature and stator assemblies can vary widely depending on the desired application, and the desired amount of vibrational force intended to be generated by the shaker assembly.
  • the integrated base plate-bottom pole 9 , and top plate 5 are configured in a substantially square shape in the exemplary system shown in FIGS. 1 and 2 , with the coil bobbin 3 , outer pole 18 , magnet 8 , and top pole 4 being configured in substantially circular or cylindrical shapes in order to improve the uniformity of the DC field within the gap and simplify the manufacturing processes. It will be understood and appreciated that many different shapes, sizes, and implementations of the current invention are possible without departing from the spirit and scope of the current invention.
  • a boss 22 in the center of the voice coil 6 is firmly attached to the top plate 5 and fitted to a bushing 28 , 29 mounted in the center of the top pole 4 .
  • the boss 22 provides the excessive transverse load carrying capacity in this embodiment, and thus bushing material 7 on top pole 4 and robust coil bobbin 3 are not needed. Without the coil bobbin 3 the voice coil 6 can be fabricated as a free standing coil and adhesively joined to the underside 19 of the top plate 5 .
  • multiple opposing coil-magnet arrays are operatively configured on the armature and stator respectively in either voice coil or non-voice coil arrangements such that uniform activation of the coil sections with AC current produce a vibrational motion in the armature.
  • a uniform size, shape, and gap is chosen for magnets 30 , 32 , 34 , and 36 of the magnet array.
  • coil-magnet array combinations are possible given the present design, such as those shown in FIGS. 6 and 7 . It will generally be desirable to select a design which maximizes the “X” and “Y” oriented field strength felt by each coil section as this will produce the greatest amount of force in the presence of AC current. Coils may be activated by internal or external circuitry (not shown), and uniformly actuated in order to induce vibrational motion in the armature. Various bushing, pin, rail, or other mounting mechanisms are used to position and stabilize the armature of the present embodiment with respect to the stator, as described above.
  • elastomer load bearing and coil positioning springs are located on the periphery of, and integrated with the magnetic stator structure.
  • the springs provide increased support on the outer edges of the armature or top mounting plate allowing the shaker to withstand large moments without excessive armature tilting.
  • Cylindrical springs are used with rigidly mounted internal pins to increase the stiffness in all directions perpendicular to the axis of the coil (transverse directions).

Abstract

An electrodynamic shaker apparatus is disclosed for providing shaking and/or vibrational motion. The shaker includes armature and stator assemblies as well as a distributed spring assembly. The shaker apparatus of the present invention is robust, supports increased off-center loads, and has a low profile such that it may be easily placed under an item of furniture in order to impart vibrational motion in response to electrical signals from a variety of sources.

Description

    RELATED APPLICATION INFORMATION
  • This application claims the benefit of and is a continuation of U.S. patent application Ser. No. 11/478,003 filed on Jun. 29, 2006, now abandoned, which is a continuation of U.S. application Ser. No. 10/673,830 filed on Sep. 29, 2003, now U.S. Pat. No. 7,069,787, both of which are entitled ROBUST LOW PROFILE SHAKER, and each of which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates generally to an apparatus for converting electrical signals into physical motion through the use of an electromagnetic transducer. In particular, the present invention provides a robust, low profile shaker system having an increased off center load acceptance which may be easily placed under an object in order to impart vibrational motion in response to electrical signals from a signal source.
  • 2. Description of Related Art
  • The field of electrodynamic transducers for imparting shaking or vibrational motion is well established. The applicant for the present invention considered several prior shaker systems and noted the deficiencies listed below.
  • Existing electrodynamic shakers are designed to produce a cyclical force on a test subject or platform (typically using a load leveling suspension system) that is independently stable and sufficiently stiff in all directions except the intended direction of motion. The system shown and described in “Understanding The Physics of Electrodynamic Shaker Performance” (Sound and Vibration, October 2001 pgs 2-10) by George Fox Lang and Dave Snyder is one such system. Particularly, the moving portion of a voice coil actuated shaker can be damaged by loads in directions other than the direction of intended motion.
  • U.S. Pat. No. 6,389,900 shows a shaker design wherein the shaker is isolated from all forces on the test subject that are not aligned with the direction of intended motion or offset from the center of the coil. This is typically accomplished by coupling the two sides with a long thin rod called a stinger. The resulting assembly is complex, large and expensive.
  • Some shakers use a more integrated approach in which two plate style flexures are used to add stiffness in the transverse direction (perpendicular to the direction of intended motion) and support forces which are aligned with the intended direction of motion but offset from the coil center (moments). Examples of such systems can be found in the article “Electrodynamic Shaker Fundamentals” by George Fox Lang (Sound and Vibration, April 1997 pgs 1-8) and in the Labworks Inc “Shaker Engineering Info.” The two plates must be separated by a large distance to provide adequate moment stiffness. This adds complexity, limits armature displacement and greatly adds to the height of the system.
  • Still other shakers use a combination of a plate style flexure (which has little moment stiffness alone) above the actuator and a linear bearing on the opposite side, such as the shaker shown in Labworks ET-132-2 product description. The flexure and linear bearing must be separated by a large distance along the intended direction of motion to support large moments. This system however also has limited armature displacement, and adds to the overall height of the assembly.
  • Shakers also typically use flexible conductors to transmit energy from the actuator body or housing to the moving armature. These flexible conductors are prone to failure due to fatigue.
  • Thus, prior art shakers using a plate or leaf style armature spring to provide large transverse stiffness with a soft suspension stiffness (i.e. stiffness in the direction of intended armature motion) suffer by not achieving a large maximum load to suspension stiffness ratio (the smaller the suspension stiffness the larger the shaker efficiency) while maintaining a small shaker volume and support large moments. There is therefore a need for providing a robust and efficient shaker which can be flexibly, easily, and inconspicuously installed.
  • SUMMARY OF THE INVENTION
  • The current invention encompasses an electrodynamic transducer apparatus (using a typical voice coil) having a moveable armature integrated with a stabilized base platform (stator) to produce a simple, inexpensive, thin, and generally small device that is able to withstand large loads and moments in any direction without damage. The apparatus also maintains high efficiency when operated to shake or vibrate an object, makes use of reliable flex free electrical paths, and may be inconspicuously installed beneath a subject, such as a chair, couch, seat, recliner, platform or other similar object.
  • There is presented by this invention a shaker apparatus having a moveable armature, a magnet and ferromagnetic material stator assembly, as well as a distributed spring configuration operative between the armature and stator which reduces complexity and axial height and provides increased moment stiffness (off center load support).
  • In one aspect of the present invention, elastomer load bearing and armature positioning springs are located on the periphery of, and integrated with the voice coil magnetic stator structure, rather than being situated separately above and/or below. The springs provide increased support on the outer edges of the armature or top mounting plate allowing the shaker to withstand large moments without damage. Cylindrical springs are used with rigidly mounted internal pins to increase the stiffness in all directions perpendicular to the axis of the coil (transverse directions). By situating the springs, magnet, and voice coil such that at least a part of each is located in a plane perpendicular to the direction of armature motion, the overall height (profile) of the shaker can be kept to a minimum, making it ideal for placing under objects for imparting vibrational motion.
  • In another aspect of the present invention, the voice coil is wound on a robust bobbin, which can support large armature transverse loads without damage. Close positioning of the voice coil to the armature top plate or mounting plate makes the assembly insensitive to moment induced tilting.
  • In yet another aspect of the present invention, the air gap between the iron core outer diameter (OD) and coil bobbin inner diameter (ID) is substantially less (on the order of one-half) than the air gap between the coil OD and outer pole ID. This avoids contact between the vulnerable coil and the outer ring of the stator in the event of a large transverse load.
  • In still another aspect, material with a low coefficient of friction and high wear resistance (bushing) is used between the coil bobbin and iron core. This material can be adhesively bonded to the iron core, the bobbin or both, and is configured to allow repeated contact with minimal damage.
  • In another aspect of the present invention, the power connector or power leads exit the assembly from the moving portion (armature) which contains the voice coil. This avoids the conventional flexible connection between the coil and the frame or stationary portion of prior art shakers.
  • In one alternative embodiment of the present invention, multiple opposing coil-magnet pairs are operatively configured on the armature and stator respectively in a non-voice coil arrangement to produce a force which increases or decreases the distance between the armature and stator. Similar to the first embodiment, elastomer load bearing and coil positioning springs are located on the periphery of, and integrated with the magnetic stator structure, rather than being situated separately above and/or below. The spring(s) provide increased support on the outer edges of the armature or top mounting plate allowing the shaker to withstand large moments. Cylindrical springs are used with rigidly mounted internal pins to increase the stiffness in all directions perpendicular to the axis of the coil (transverse directions).
  • In another alternative embodiment of the present invention, a plurality of springs, or a uniformity of material with springlike characteristics (i.e. foam spring, Polyurethane, silicone, etc) is interspersed throughout the shaker body in areas not occupied by opposing coil-magnet pairs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a fuller understanding of the nature and advantages of the present invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings. In the following drawings, like reference numerals designate like or similar parts throughout the drawings.
  • FIG. 1 is a side cutaway view of the present invention.
  • FIG. 2 is an exploded view of the present invention shown in FIG. 1.
  • FIG. 3 is a side cutaway view of another embodiment of the present invention.
  • FIG. 4 is an exploded view of another embodiment of the present invention.
  • FIG. 5 is a side cutaway view of the embodiment of the present invention shown in FIG. 4.
  • FIG. 6 is an exploded view of another embodiment of the present invention showing multiple coil-magnet pairs.
  • FIG. 7 is a side cutaway view of the embodiment of the present invention shown in FIG. 6.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present description is of the best presently contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense.
  • All publications referenced herein are fully incorporated by reference as if fully set forth herein.
  • The present invention can find utility in a variety of implementations without departing from the scope and spirit of the invention, as will be apparent from an understanding of the principles that underlie the invention. For instance, the present invention is best described as used in conjunction with items of furniture and entertainment systems (including home audio/video equipment, theater or other large public venue equipment, demonstration, simulation, or game systems, etc) such that the shaker can vibrate the home furnishings in response to electrical signals from the entertainment system, however it may find utility when used with a plethora of systems or devices which are to be shaken or vibrated, such as laboratory test subjects, dance floors, platforms etc.
  • Looking now to FIGS. 1 and 2, example shaker apparatus 100 is shown schematically to illustrate the current invention. Generally, shaker 100 comprises a moveable armature portion 105 operatively mounted to a base stator assembly 110 to accomplish vibrational movement. The armature assembly 105 of exemplary shaker apparatus 100 comprises a top plate 5, coil bobbin 3, and voice coil 6. Voice coil 6 is wound about and adhesively joined to the side portion of the coil bobbin 3. It will also be understood and appreciated that bobbin 3 and voice coil 6 can be integrated as a singular piece according to the current invention. To induce movement of the armature relative to the stator, electrical signals (eg. from an amplifier or other electronic signal generation apparatus) may be transferred to the voice coil 6 via integrated electrical connector(s) 11 fixedly mounted to the armature. The armature assembly is preferably assembled with rivets but may be assembled using adhesive, tack welding, fasteners, or other joining means or combination of joining means. It will be understood and appreciated that many different configurations of the armature, voice coil, and integrated electrical connectors are possible without departing from the spirit and scope of the present invention.
  • The stator assembly 110 of exemplary shaker apparatus 100 comprises a integrated base plate-bottom pole 9, outer pole 18, magnet 8, and top pole 4. Integrated base plate-bottom pole 9 is made of steel or other material with high magnetic permeability (generally known as ferromagnetic materials). Integrated base plate-bottom pole 9 may be a combination of a rigid support material (base plate) including, but not limited to metals, polymers, plastics, glass or fiberglass materials, ceramic materials, and a smaller ferromagnetic bottom pole. Outer pole 18 (a ring in one embodiment of the present invention) and top pole 4 are made of steel or other ferromagnetic material. Magnet 8 can be a singular piece or multiple pieces of any magnetic material. The stator assembly is preferably assembled with adhesive but can be assembled using welding fasteners or other joining means. Many of the stator components, including integrated base plate-bottom pole 9 and outer pole 18, may be manufactured as a singular structure. It will be appreciated that the integrated base plate-bottom pole 9, outer pole 18, and top pole 4 may be made of the same material, and integrated with the magnet 8. Generally, the bottom pole 9, outer pole 18, and top pole 4 are shaped and fashioned such that magnet 8 and coil 6 may be closely positioned and the magnetic field of magnet 8 focused substantially through coil 6 to maximize vibrating force of the shaker.
  • Bushing material 7 is fixedly or adhesively attached to top pole 4 in order to support excessive transverse forces between the armature and the stator assembly (due to transverse forces exerted on the top plate 5). Bushing 7 is generally a low coefficient of friction/wear resistant material (such as teflon in the example system) and is used between the ID 2 of coil bobbin 3 and the OD 1 of the top pole 4.
  • Elastomer load bearing and armature positioning springs 17 are located on the periphery of, and integrated with the stator and/or armature structure, rather than being situated separately above and/or below the moveable assembly. This peripheral spring configuration provides increased support on the outer edges of the top plate of the armature allowing the shaker to withstand large moments without damage. Cylindrical springs are used in the current example system with rigidly mounted internal pins 46 to increase the stiffness in all directions perpendicular to the axis of the coil (transverse directions). As such, the shaker of the current invention can be implemented easily in a home entertainment setting without requiring that the legs of furniture or other object be placed directly on the center of the top plate. Looking now to FIG. 2, the armature assembly is supported by one or more springs 17 (four are used in the current example system, one substantially in each corner of the shaker assembly) which are fixedly attached to the underside 19 of the top plate 5 and the top of the bottom plate 9. The springs 17 are preferably made to be stiff in the transverse direction and soft in the direction of vibration by pins 46 rigidly mounted to or integrated with bottom plate 9. The pins 46 may be pressed into holes in the bottom plate 9, fastened with screws, welded in place, or simply fabricated with plate 9 to be a singular base structure during manufacture. The pins 46 extend a distance within the springs equal to the spring height, minus the maximum armature displacement (typically 0.25 inches for a shaker assembly fabricated to support 200 pounds). These pins are optional because the coil bobbin bushing 7 can carry the transverse loads, however added stability and less bushing wear can be achieved by including pins 46. It will be understood and appreciated that spring(s) 17 may be fixedly attached (i.e. adhesively bonded or mechanically fastened) to either or both of the top and bottom plates of the shaker, or may be assembled in a modular/removable fashion (for easy serviceability, shipping, etc of the shaker) such that the weight and pressure of an object placed on the shaker is relied on to keep the shaker assembly together during operation. It will also be appreciated that the pins 46, integrated base plate-bottom pole 9, and outer pole 18 may be machined or cast as a singular member, or may be assembled in a modular nature as described herein. It will also be understood by those skilled in the art that the elastomer cylindrical springs can be replaced with metal coil springs, wave springs, conical washer springs or the like, without departing from the spirit or scope of the present invention. Additionally, the springs may be replaced by a plurality of springs, or a uniformity of material with springlike characteristics (i.e. foam spring, Polyurethane, silicone, etc) interspersed throughout the shaker body in areas not occupied by opposing coil-magnet pairs. Other steel-magnet designs may be used such as a conventional ring magnet structure with magnet material located on the outside of the voice coil, a ferromagnetic inner pole, smaller coil diameter and a corresponding ring shaped top pole on the outside of the coil and above the magnet. It will be understood that the spring assembly may comprise one or more springs or springlike materials and generally operates to position the armature relative to the stator, and to flexibly support the armature (especially about the periphery of the shaker top plate) in the presence of a load, even if such load is positioned off the center of the top plate.
  • The armature assembly 105 is positioned such that the voice coil 6 is suspended within the air gap of the DC field generated by the integrated base plate-bottom pole 9, magnet 8, top pole 4, and outer pole 18 assembly. The armature assembly is designed to vibrate or move in the direction of the voice coil 6 axis (the “z” axis) relative to the steel-magnet assembly, when AC electrical current is passed through the voice coil 6. As will be appreciated by those skilled in the art, the presence of AC current in voice coil 6 generates vibratory force and motion along the Z-axis in shaker 100. Given that the AC current for the shaker will be coming from audio/video equipment according to one contemplated implementation of the present invention, an amplifier will be necessary in most cases to generate sufficient force to vibrate a large and/or heavy object. For instance, 50 watts RMS power may be required for a shaker that is 5 inches long, 5 inches wide and 1 inch tall to vibrate a 100 lb mass with a reasonable amplitude. In an alternate embodiment of the present invention, an appropriate amplification and power conditioning system may be integrated with the shaker apparatus 100, either externally, internally, or a combination of both in order to present a desired amount of current to drive the shaking motion of the apparatus.
  • Alternative implementations of the coil portion may involve traces in a printed circuit board or surface mounted on or inside (embedded) the armature plate in order to affect vibratory motion in the shaker. Additionally, the coil portion may be wound without the aid of a rigid bobbin structure, simply being held by adhesives, bonding agents, or the like in order to maintain a desired shape and affixed to the top plate. All that is required is that coil portion 6 be configured such that a vibratory force is produced in the presence of magnet 8 when AC current is passed through coil portion 6.
  • The shaker assembly is intended to be placed on a stiff surface while the subject 10 (such as an object or item of furniture) is placed on or attached to the top of the top plate 5. The size and shape of various components and portions of the armature and stator assemblies can vary widely depending on the desired application, and the desired amount of vibrational force intended to be generated by the shaker assembly. By way of example and not limitation, the integrated base plate-bottom pole 9, and top plate 5 are configured in a substantially square shape in the exemplary system shown in FIGS. 1 and 2, with the coil bobbin 3, outer pole 18, magnet 8, and top pole 4 being configured in substantially circular or cylindrical shapes in order to improve the uniformity of the DC field within the gap and simplify the manufacturing processes. It will be understood and appreciated that many different shapes, sizes, and implementations of the current invention are possible without departing from the spirit and scope of the current invention.
  • In an alternate embodiment shown in FIG. 3, a boss 22 in the center of the voice coil 6 is firmly attached to the top plate 5 and fitted to a bushing 28, 29 mounted in the center of the top pole 4. The boss 22 provides the excessive transverse load carrying capacity in this embodiment, and thus bushing material 7 on top pole 4 and robust coil bobbin 3 are not needed. Without the coil bobbin 3 the voice coil 6 can be fabricated as a free standing coil and adhesively joined to the underside 19 of the top plate 5. It will be appreciated that many different configurations of bushings, bosses, rails, grooves or other similar guides for carrying transverse loads between the armature and stator, and generally fixing the vibrational motion of the shaker to substantially one axis are possible without departing from the spirit and scope of the current invention.
  • In another alternative embodiment of the present invention shown generally in FIGS. 4 through 7, multiple opposing coil-magnet arrays are operatively configured on the armature and stator respectively in either voice coil or non-voice coil arrangements such that uniform activation of the coil sections with AC current produce a vibrational motion in the armature. In order to generate a uniform magnetic field for the coil sections 38, 40, 42 and 44 on underside 19 of top plate 5 (which is mounted to or integrated with top plate 5) to interact with, a uniform size, shape, and gap (placement) is chosen for magnets 30, 32, 34, and 36 of the magnet array. Depending on design choices, and the desired size and/or vibrational force of the shaker, many different coil-magnet array combinations are possible given the present design, such as those shown in FIGS. 6 and 7. It will generally be desirable to select a design which maximizes the “X” and “Y” oriented field strength felt by each coil section as this will produce the greatest amount of force in the presence of AC current. Coils may be activated by internal or external circuitry (not shown), and uniformly actuated in order to induce vibrational motion in the armature. Various bushing, pin, rail, or other mounting mechanisms are used to position and stabilize the armature of the present embodiment with respect to the stator, as described above. As with the exemplary embodiment above, elastomer load bearing and coil positioning springs are located on the periphery of, and integrated with the magnetic stator structure. The springs provide increased support on the outer edges of the armature or top mounting plate allowing the shaker to withstand large moments without excessive armature tilting. Cylindrical springs are used with rigidly mounted internal pins to increase the stiffness in all directions perpendicular to the axis of the coil (transverse directions).
  • It will be appreciated that in addition to the various coil and magnet shapes, sizes, and configurations (collectively the electromagnetic assembly), and spring assembly arrangements discussed in various embodiments above, many different ways of mounting or integrating the electromagnetic and spring assemblies with the armature top plate and stator bottom plate are possible in order to fashion a robust, low profile shaker assembly in keeping with the spirit and scope of the present invention. Additionally, while the overall shaker housing (as shown and described) comprises top and bottom plates having a substantially square shape, it will be understood that many different shaker housing shapes, sizes, and configurations are possible in keeping with the spirit and scope of the current invention. For instance, circular, triangular, rectangular, hexagonal, octagonal, as well as many other shaker housing (i.e. the top and bottom plates which form the armature and stator portions respectively) shapes and structures may be implemented in conjunction with the current invention.
  • Many additional forms and implementations of the low profile shaker apparatus of the present invention could be contemplated for a variety of purposes without departing from the scope and spirit of the current invention.
  • The system and process of the present invention has been described above in terms of functional aspects in schematic diagram format. It is understood that unless otherwise stated to the contrary herein, one or more functions and aspects of the apparatus may be integrated in a single physical device, or one or more functions may be implemented in separate physical devices, without departing from the scope and spirit of the present invention.
  • It is appreciated that detailed discussion of the actual implementation of each apparatus module is not necessary for an enabling understanding of the invention. The actual implementation is well within the routine skill of a mechanical and system engineer, given the disclosure herein of the system attributes, functionality, and inter-relationship of the various functional modules in the system. A person skilled in the art, applying ordinary skill can practice the present invention without undue experimentation.
  • While the invention has been described with respect to the described embodiments in accordance therewith, it will be apparent to those skilled in the art that various modifications and improvements may be made without departing from the scope and spirit of the invention. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiments.

Claims (17)

1. A moveable assembly for use in connection with audio/video equipment for imparting variable motion to an object of furniture, comprising:
a bottom portion;
a moveable top portion opposing the bottom portion; and
an electromagnetic assembly, a portion of the electromagnetic assembly being integrated with the top portion and another portion of the electromagnetic assembly being integrated with the bottom portion in order to produce variable motion in at least the top portion in synchronization with electrical signals from the audio/video equipment.
2. A moveable assembly as in claim 1, further comprising a spring assembly for providing resilient support between the bottom portion and the top portion.
3. A moveable assembly as in claim 1, wherein the electromagnetic assembly comprises at least one coil portion and at least one magnetic portion.
4. A moveable assembly as in claim 3, wherein the coil portion comprises at least one of the following: a wound voice coil operatively attached to the top portion, a coil configured on the surface of the top portion, and a coil embedded in the top portion.
5. A moveable assembly as in claim 3, wherein the magnetic portion comprises:
a magnet for interacting with the coil portion in order to produce the variable motion; and
at least one metallic pole piece for interacting with the magnetic field of the magnet.
6. A moveable assembly as in claim 5, wherein the metallic pole piece comprises:
a bottom pole operatively connected to the bottom portion;
an outer pole configured about the magnet; and
a top pole configured at least partially above the magnet, all poles being operative together to focus the magnetic field of the magnet substantially through the coil portion.
7. A moveable assembly as in claim 1 wherein the top portion comprises a top plate for contacting at least a portion of the object of furniture such that variable motion may be imparted to the object of furniture in the presence of the electrical signals.
8. A moveable assembly as in claim 7, wherein the electrical signals comprise at least one of the following; entertainment related audio signals, entertainment related audiovisual signals, and entertainment related motion signals.
9. A moveable assembly as in claim 2, wherein the bottom portion comprises:
a base plate having a first side for supporting at least a portion of the spring assembly and at least a portion of the electromagnetic assembly; and
a second side for contacting at least a portion of a fixed surface.
10. A moveable assembly as in claim 9, wherein the fixed surface comprises a floor.
11. A moveable assembly as in claim 2, further comprising at least one pin for receiving at least a portion of the spring assembly and for providing transverse support to the spring assembly.
12. A moveable assembly as in claim 1, wherein the object of furniture comprises at least one of the following: a chair, a couch, a seat, and a recliner.
13. A moveable assembly as in claim 1, further comprising a bushing material operatively configured inside the moveable assembly for providing transverse support during variable motion.
14. A moveable assembly as in claim 2, wherein the spring assembly comprises at least one discrete spring located at the periphery of the electromagnetic assembly such that at least part of the spring is co-planar with at least part of the electromagnetic assembly.
15. A moveable assembly as in claim 2, wherein the spring assembly comprises at least one of the following: a material having springlike characteristics interspersed within the moveable assembly, and an elastomeric material.
16. A moveable assembly as in claim 2, wherein the height of the spring assembly is substantially equal to the distance between the bottom portion and the top portion.
17. A moveable assembly as in claim 1, further comprising an integrated electrical connector on an outer portion of the moveable assembly for facilitating electrical connection between a power source and the electromagnetic assembly.
US11/974,337 2003-09-29 2007-10-11 Robust low profile shaker Abandoned US20080034876A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/974,337 US20080034876A1 (en) 2003-09-29 2007-10-11 Robust low profile shaker
US12/590,645 US8061210B2 (en) 2003-09-29 2009-11-12 Robust low profile shaker
US13/300,549 US20120060616A1 (en) 2003-09-29 2011-11-19 Robust low profile shaker

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/673,830 US7069787B2 (en) 2003-09-29 2003-09-29 Robust low profile shaker
US11/478,003 US20060243052A1 (en) 2003-09-29 2006-06-29 Robust low profile shaker
US11/974,337 US20080034876A1 (en) 2003-09-29 2007-10-11 Robust low profile shaker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/478,003 Continuation US20060243052A1 (en) 2003-09-29 2006-06-29 Robust low profile shaker

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/590,645 Continuation US8061210B2 (en) 2003-09-29 2009-11-12 Robust low profile shaker

Publications (1)

Publication Number Publication Date
US20080034876A1 true US20080034876A1 (en) 2008-02-14

Family

ID=34376719

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/673,830 Expired - Lifetime US7069787B2 (en) 2003-09-29 2003-09-29 Robust low profile shaker
US11/478,003 Abandoned US20060243052A1 (en) 2003-09-29 2006-06-29 Robust low profile shaker
US11/974,337 Abandoned US20080034876A1 (en) 2003-09-29 2007-10-11 Robust low profile shaker
US12/590,645 Expired - Fee Related US8061210B2 (en) 2003-09-29 2009-11-12 Robust low profile shaker
US13/300,549 Abandoned US20120060616A1 (en) 2003-09-29 2011-11-19 Robust low profile shaker

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/673,830 Expired - Lifetime US7069787B2 (en) 2003-09-29 2003-09-29 Robust low profile shaker
US11/478,003 Abandoned US20060243052A1 (en) 2003-09-29 2006-06-29 Robust low profile shaker

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/590,645 Expired - Fee Related US8061210B2 (en) 2003-09-29 2009-11-12 Robust low profile shaker
US13/300,549 Abandoned US20120060616A1 (en) 2003-09-29 2011-11-19 Robust low profile shaker

Country Status (1)

Country Link
US (5) US7069787B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221405A1 (en) * 2008-03-03 2009-09-03 Leao Wang Shaking mechanism of a treadmill
WO2011042768A1 (en) * 2009-10-08 2011-04-14 Petter Brown Acoustic panel
WO2011133784A1 (en) * 2010-04-21 2011-10-27 Delta Design, Inc. System and method for accelerating a device
US9696236B1 (en) * 2014-11-12 2017-07-04 Keysight Technologies, Inc. Testing device including pedestal, vibratory platform and locking mechanism for clamping the pedestal to the platform, and test equipment comprising the same
US11060952B2 (en) * 2017-11-10 2021-07-13 Suzhou Rs Technology Co., Ltd. Test device for testing high-pressure water tightness function of profiled components

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9949004B2 (en) * 2003-03-10 2018-04-17 Daniel E. Cohen Sound and vibration transmission device
US7069787B2 (en) * 2003-09-29 2006-07-04 Crowson Ii Randolph J Robust low profile shaker
KR100840591B1 (en) * 2007-02-22 2008-06-23 주식회사 티에스메디텍 Chair having exercise function of sonic vibration type
US20090154737A1 (en) * 2007-12-17 2009-06-18 I-Fi Company, Llc Apparatus, system, and method for an entertainment chair
GB2474749B8 (en) * 2010-10-01 2011-10-26 Porter And Davies Ltd A vibration seat
JP5913910B2 (en) * 2011-04-26 2016-04-27 国際計測器株式会社 Linear motion actuator and vibration device
JP2014530104A (en) 2011-10-17 2014-11-17 ザ ギッタマー カンパニーThe Guitammer Company Vibration transducers and actuators
CN102412696B (en) * 2011-12-10 2014-07-30 东莞市旭业光电科技有限公司 Voice coil motor and assembly process thereof
DE102011089251B4 (en) * 2011-12-20 2014-05-22 Siemens Aktiengesellschaft Tripping unit for actuating a mechanical switching unit of a device
US9762105B2 (en) * 2013-03-15 2017-09-12 II Randolph J. Crowson Hinged motion transducer
US20150096383A1 (en) * 2013-10-04 2015-04-09 II Randolph J. Crowson Robust low profile shaker
KR101485264B1 (en) * 2013-11-21 2015-01-21 씨제이포디플렉스 주식회사 Seat for feeling vibration
CN105021364A (en) * 2014-04-17 2015-11-04 长春孔辉汽车科技股份有限公司 Six degree of freedom automobile seat vibration test bench
US20170322108A1 (en) * 2016-05-09 2017-11-09 II Randolph J. Crowson Robust Low Profile Shaker
CA2950508A1 (en) * 2016-12-02 2018-06-02 National Research Council Of Canada Compact vibration reducing human support
CN110596236A (en) * 2019-09-27 2019-12-20 湖北晟正汽车零部件有限公司 Urea solution concentration detection device who optimizes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064376A (en) * 1975-04-08 1977-12-20 Bodysonic Kabushiki Kaisha Sound reproduction system and device
US4697581A (en) * 1984-04-04 1987-10-06 Ken Hayashibara Electromagnetic vibration generator
US5348370A (en) * 1992-12-04 1994-09-20 Fukuoka Kagaku Ltd. Apparatus for vibrating seats
US6256397B1 (en) * 1997-08-25 2001-07-03 Bodysonic Laboratory, Inc. Body-sensible swinging and vibrating apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194992A (en) 1962-06-14 1965-07-13 Textron Electronics Inc Electroynamic type vibration generator
US3262308A (en) 1964-01-10 1966-07-26 Schloss Fred Vibrating table structure
GB1602117A (en) 1977-10-04 1981-11-04 Seismograph Service Englang Lt Vibration generators particularly for seismic exploration
US4715229A (en) 1986-05-05 1987-12-29 Ling Electronics, Inc. Apparatus for vibration testing
US4858488A (en) 1986-05-05 1989-08-22 Ling Electronics, Inc. Link arm suspension
US4678347A (en) 1986-05-05 1987-07-07 Ling Electronics Inc. Recirculating bearing
GB2236434B (en) 1989-09-29 1993-10-13 Ling Dynamic Systems Suspension for an electriomagnetic vibration generator
US5528697A (en) * 1991-05-17 1996-06-18 Namiki Precision Jewel Co., Ltd. Integrated vibrating and sound producing device
US5321762A (en) 1991-08-05 1994-06-14 Aura Systems, Inc. Voice coil actuator
US5490713A (en) * 1992-12-04 1996-02-13 Fukuoka Kagaku Ltd. Apparatus for vibrating seats
US5424592A (en) 1993-07-01 1995-06-13 Aura Systems, Inc. Electromagnetic transducer
US5473700A (en) 1993-11-24 1995-12-05 Fenner, Jr.; Thomas C. High gain acoustic transducer
US6211775B1 (en) * 1998-06-15 2001-04-03 Samsung Electro-Mechanics Co., Ltd. Vibration apparatus capable of generating and externally transmitting a sound wave of audible frequency and transmitting a vibration for notification
US5973422A (en) 1998-07-24 1999-10-26 The Guitammer Company Low frequency vibrator
US6131461A (en) 1998-09-01 2000-10-17 Mb Dynamics Flexure assembly
US6389900B1 (en) 1998-09-01 2002-05-21 Mb Dynamics Flexure assembly
US7069787B2 (en) * 2003-09-29 2006-07-04 Crowson Ii Randolph J Robust low profile shaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064376A (en) * 1975-04-08 1977-12-20 Bodysonic Kabushiki Kaisha Sound reproduction system and device
US4697581A (en) * 1984-04-04 1987-10-06 Ken Hayashibara Electromagnetic vibration generator
US5348370A (en) * 1992-12-04 1994-09-20 Fukuoka Kagaku Ltd. Apparatus for vibrating seats
US6256397B1 (en) * 1997-08-25 2001-07-03 Bodysonic Laboratory, Inc. Body-sensible swinging and vibrating apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221405A1 (en) * 2008-03-03 2009-09-03 Leao Wang Shaking mechanism of a treadmill
WO2011042768A1 (en) * 2009-10-08 2011-04-14 Petter Brown Acoustic panel
WO2011133784A1 (en) * 2010-04-21 2011-10-27 Delta Design, Inc. System and method for accelerating a device
US9010188B2 (en) 2010-04-21 2015-04-21 Delta Design, Inc. System and method for accelerating a device
US9733151B2 (en) 2010-04-21 2017-08-15 Delta Design, Inc. System and method for accelerating a device
US9696236B1 (en) * 2014-11-12 2017-07-04 Keysight Technologies, Inc. Testing device including pedestal, vibratory platform and locking mechanism for clamping the pedestal to the platform, and test equipment comprising the same
US11060952B2 (en) * 2017-11-10 2021-07-13 Suzhou Rs Technology Co., Ltd. Test device for testing high-pressure water tightness function of profiled components

Also Published As

Publication number Publication date
US20050066737A1 (en) 2005-03-31
US20060243052A1 (en) 2006-11-02
US7069787B2 (en) 2006-07-04
US8061210B2 (en) 2011-11-22
US20120060616A1 (en) 2012-03-15
US20100058872A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
US8061210B2 (en) Robust low profile shaker
US5973422A (en) Low frequency vibrator
KR100228155B1 (en) Electromagnetic transducer
CN110177322B (en) Screen sound production exciter and electronic equipment
US7480392B2 (en) Plate type speaker using horizontal vibration voice coil
AU2006302791A1 (en) Inertial voice type coil actuator systems
US7333620B2 (en) Acoustic transducer with mechanical balancing
US7450729B2 (en) Low-profile transducer
WO1987007020A1 (en) Apparatus for vibration testing
JP6966831B2 (en) Vibration actuator
US20170322108A1 (en) Robust Low Profile Shaker
US7412065B2 (en) Acoustic transducer with folded diaphragm
US20020005069A1 (en) Six degree of freedom magnetically levitated vibration table
US20150096383A1 (en) Robust low profile shaker
US4680492A (en) Audio-frequency electromechanical vibrator
US11784548B2 (en) Vibrating actuator with two resonant frequencies and two moving parts
US9762105B2 (en) Hinged motion transducer
EP1969899A1 (en) Inertial voice type coil actuator
JPH044338A (en) Vibration control device
CN101056477A (en) Radio attached audio energy converter
JP2004105816A (en) Electromagnetic acoustics conversion-vibration generator and mobile communicating device equipped therewith
CN201557251U (en) Excitation vibration generating device
CN219718474U (en) Vibration assembly, sound generating device and electronic equipment
US20050279566A1 (en) Loudspeaker
WO2008019564A1 (en) An open acoustical device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION